Patents by Inventor Paul Toliver

Paul Toliver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8364033
    Abstract: Changes in a signal are detected. The signal is repeatedly sampled in a synchronous manner during a predetermined interval to generate a captured eye diagram. At least one of a positive differential eye diagram or a negative differential eye diagram is generated from the captured eye diagram and a baseline eye diagram. The at least one positive or negative differential eye diagram is analyzed to determine whether a change in signal conditions is present.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 29, 2013
    Assignee: Telcordia Technologies, Inc.
    Inventors: Ronald A. Skoog, Marcus Pang, Paul Toliver
  • Publication number: 20130011133
    Abstract: Changes in a signal are detected. The signal is repeatedly sampled in a synchronous manner during a predetermined interval to generate a captured eye diagram. At least one of a positive differential eye diagram or a negative differential eye diagram is generated from the captured eye diagram and a baseline eye diagram. The at least one positive or negative differential eye diagram is analyzed to determine whether a change in signal conditions is present.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Ronald A. Skoog, Marcus Pang, Paul Toliver
  • Patent number: 8351799
    Abstract: A method for multiscale sampling for wide dynamic range electro-optic receivers is presented. The method comprises obtaining a signal, reproducing the signal into first and second signals, scaling one signal with respect to the other, modulating both signals with the same modulation function, and utilizing the resulting vector response function to invert the response of the link over a greater dynamic range than would otherwise be possible with a single instance of the modulated signal. The sealed modulation response may be obtained by splitting the signal into two polarizations and utilizing a modulator having different response for the two polarizations, or by utilizing two modulators.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 8, 2013
    Assignee: Telcordia Technologies, Inc.
    Inventors: Thomas Banwell, Anjali Agarwal, Janet Jackel, Paul Toliver, Ted K. Woodward
  • Publication number: 20120315049
    Abstract: A system and method for optimizing an optical RF photonic link system is presented. The system comprises a modulator subsystem in which nonlinear response is compensated by an envelope precompensation method and employs an optical filter to suppress optical carriers and extract modulated sidebands, an optical amplifier, and an array of photodetectors, each having a plurality of pairs of diodes. The modulator subsystem performs optical filtering on the signal, the signal is amplified by the optical amplifier and sent to the array of photodetectors. The optical amplifier can be an erbium doped fiber amplifier, or a phase sensitive amplifier. The optical power can be delivered to each diode of the array of photodetectors via a photonic integrated circuit.
    Type: Application
    Filed: November 19, 2009
    Publication date: December 13, 2012
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Thomas Banwell, Anjali Agarwal, Paul Toliver, Ted K. Woodward
  • Publication number: 20110234435
    Abstract: A system and method for selective wavelength interleaved filtering technique for analog to digital conversion (ADC) comprises a remote aperture for analog input, a modulator operable to transform the analog input into an initial optical signal, a photonic front end having high resolution optical filters operable to filter the optical signal into multiple subsequent optical signals and supply local oscillators for downconversion into electrical signals, a segmented subsystem having a plurality of ADCs, each operable to receive and convert one subsequent optical signal of the optical signals, and a memory buffer and process subsystem operable to reconstruct the converted subsequent optical signals into a digital representation of the analog input by executing reconstruction algorithms. Provision is made for compensation of distortions arising in the electrical to optical to electrical conversion process.
    Type: Application
    Filed: September 24, 2010
    Publication date: September 29, 2011
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Ted K. Woodward, Tom Banwell, Anjali Agarwal, Paul Toliver, Carol Martin
  • Publication number: 20110200192
    Abstract: An optical communications network incorporating photonic layer security, with secure key exchange without loss of data, and a method of operating the network are disclosed. The network comprises a transmit side and a receive side. The transmit side includes first and second scramblers and a transmit side switch; and the receive side includes first and second descramblers and a receive side switch. The scramblers use encryption keys to encrypt optical signals, and the descramblers use the encryption keys to decrypt the encrypted optical signals. The encryption keys can be updated randomly and at will by installing new encryption keys on the scramblers and descramblers, and the transmit side and receive side switches are synchronized so that all of the optical signals that are encrypted using a new or updated encryption key are decrypted using the same new or updated encryption key.
    Type: Application
    Filed: June 28, 2010
    Publication date: August 18, 2011
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Shahab Etemad, Paul Toliver
  • Publication number: 20110135299
    Abstract: Changes in a signal are detected. The signal is repeatedly sampled in a synchronous manner during a predetermined interval to generate a captured eye diagram. At least one of a positive differential eye diagram or a negative differential eye diagram is generated from the captured eye diagram and a baseline eye diagram. The at least one positive or negative differential eye diagram is analyzed to determine whether a change in signal conditions is present.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Ronald A. Skoog, Marcus Pang, Paul Toliver
  • Patent number: 7920790
    Abstract: The present invention is directed to an in-passband signaling method. The method includes the steps of extracting a control component and a data component from an optical signal. The control component may be used to determine the state of an optical switch in either a packet-switched network or circuit-switched network. The state of the optical switch is switched based on the extracted control signal. The control component may also be used to provide other network functions such as network operations, administration, and management (OA&M), network monitoring, and network control and management (NC&M). The control component is erased by polarization realignment of the optical signal. The control component is updated by remodulating the polarization state of the data component.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 5, 2011
    Assignee: Telcordia Technologies, Inc.
    Inventor: Paul Toliver
  • Publication number: 20100327147
    Abstract: A system and method for controlling an optical filter is provided. The system and method includes dithering a delay of an optical path within an optical filter unit cell, measuring a position of a filter zero, measuring a position of a filter pole, or measuring positions of both a filter zero and a filter pole by observing an output of the unit cell when the delay is dithered, and using the measurement as feedback for maintaining the position of the filter zero at a desired position, maintaining the position of the filter pole at a desired position, or maintaining the positions of both the filter zero and the filter pole at desired positions.
    Type: Application
    Filed: December 16, 2009
    Publication date: December 30, 2010
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventor: Paul Toliver
  • Publication number: 20100221009
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Application
    Filed: February 22, 2010
    Publication date: September 2, 2010
    Applicants: TELCORDIA TECHNOLOGIES, INC., University of Central Florida Research Foundation, Inc. (UCFRF)
    Inventors: Shahab Etemad, Paul Toliver, Janet Lehr Jackel, Ronald Charles Menendez, Stefano Galli, Thomas Clyde Banwell, Peter Delfyett
  • Publication number: 20100183309
    Abstract: A system and method for transporting encrypted data having a transmitter and a receiver is provided. The transmitter generates a sequence of optical pulses, which are copied and output as identical channels. The identical channels are modulated by a plurality of modulators using data to generate a modulated data signal. Respective spectral phase encoders coupled to each of the plurality of data modulators encode respective modulated data signals using a plurality of mutually orthogonal phase codes that are individually associated with the respective spectral phase encoder. These encoded data signals are combined and code-scrambling by a spectral phase scrambler t using a scramble code as an encryption key to generate an encrypted signal. A receiver reverses the encryption to extract the data.
    Type: Application
    Filed: June 26, 2009
    Publication date: July 22, 2010
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Shahab Etemad, Thomas Banwell, Janet Jackel, Ronald Menendez, Paul Toliver
  • Patent number: 7729616
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: June 1, 2010
    Assignees: Telcordia Technologies, Inc., University of Central Florida
    Inventors: Shahab Etemad, Paul Toliver, Janet Lehr Jackel, Ronald Charles Menendez, Stefano Galli, Thomas Clyde Banwell, Peter Delfyett
  • Publication number: 20100111545
    Abstract: A method for multiscale sampling for wide dynamic range electro-optic receivers is presented. The method comprises obtaining a signal, reproducing the signal into first and second signals, scaling one signal with respect to the other, modulating both signals with the same modulation function, and utilizing the resulting vector response function to invert the response of the link over a greater dynamic range than would otherwise be possible with a single instance of the modulated signal. The sealed modulation response may be obtained by splitting the signal into two polarizations and utilizing a modulator having different response for the two polarizations, or by utilizing two modulators.
    Type: Application
    Filed: October 6, 2009
    Publication date: May 6, 2010
    Applicant: TELCORDIA TECHNOLOGIES, INC.
    Inventors: Thomas Banwell, Anjali Agarwal, Janet Jackel, Paul Toliver, Ted K. Woodward
  • Patent number: 7620328
    Abstract: The present invention relates generally to an optical CDMA transmission system and method employing differential optical encoding and bipolar decoding. Differential encoding and bipolar decoding may be performed at the bit level, wherein differential phase encoding and decoding occurs on an entire composite signal. Differential encoding and bipolar decoding may also be performed at the chip level, wherein differential phase encoding and decoding occurs on individual spectral components of a given signal.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: November 17, 2009
    Assignee: Telcordia Technologies, Inc.
    Inventor: Paul Toliver
  • Publication number: 20080063409
    Abstract: The present invention is directed to an in-passband signaling method. The method includes the steps of extracting a control component and a data component from an optical signal. The control component may be used to determine the state of an optical switch in either a packet-switched network or circuit-switched network. The state of the optical switch is switched based on the extracted control signal. The control component may also be used to provide other network functions such as network operations, administration, and management (OA&M), network monitoring, and network control and management (NC&M). The control component is erased by polarization realignment of the optical signal. The control component is updated by remodulating the polarization state of the data component.
    Type: Application
    Filed: September 8, 2006
    Publication date: March 13, 2008
    Inventor: Paul Toliver
  • Publication number: 20070036553
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Application
    Filed: February 18, 2005
    Publication date: February 15, 2007
    Inventors: Shahab Etemad, Paul Toliver, Janet Jackel, Ronald Menendez, Stefano Galli, Thomas Banwell, Peter Delfyett
  • Publication number: 20060171722
    Abstract: The present invention relates generally to an optical CDMA transmission system and method employing differential optical encoding and bipolar decoding. Differential encoding and bipolar decoding may be performed at the bit level, wherein differential phase encoding and decoding occurs on an entire composite signal. Differential encoding and bipolar decoding may also be performed at the chip level, wherein differential phase encoding and decoding occurs on individual spectral components of a given signal.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 3, 2006
    Inventor: Paul Toliver
  • Patent number: 6788896
    Abstract: A technique for switching all-optical packet switching is disclosed. In one embodiment, the technique is realized by receiving at least one data packet over a network, disassociating a payload portion from a first header in the data packet, forming a second header based on a first information in the first header, associating the payload portion with the second header to form a modified packet and switching the modified packet based on a second information contained in the first header.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: September 7, 2004
    Inventors: Guo-Qiang Wang, Dominic Goodwill, Paul Toliver, Kihong Kim
  • Patent number: 5706398
    Abstract: A method and apparatus for compressing voice signals for storage and later retrieval is disclosed. The apparatus includes a microphone, a voice processor, a speaker and data storage. The apparatus forms a voice recognition template that associates a unique binary code word with each distinct syllabic sound in a particular language. When a user wishes to store voice signals using the apparatus, the user speaks into the microphone. For each syllable of the voice signal, the microphone provides the syllable to a voice processor. The voice processor formulates the frequency signature for the syllable. The frequency signal is compared to voice recognition template and the associated binary code word closest to the spoken syllable is stored within the data storage.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: January 6, 1998
    Inventors: Eskinder Assefa, Paul A. Toliver