Patents by Inventor Paul Tran
Paul Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10973426Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: GrantFiled: March 9, 2020Date of Patent: April 13, 2021Assignee: Biosense Webster (Israel) Ltd.Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Publication number: 20200205690Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: ApplicationFiled: March 9, 2020Publication date: July 2, 2020Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Patent number: 10582871Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: GrantFiled: February 4, 2019Date of Patent: March 10, 2020Assignee: Biosense Webster (Israel) Ltd.Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Patent number: 10575743Abstract: This disclosure is directed to a catheter having a basket-shaped electrode assembly with a high electrode density. The basket-shaped electrode assembly may have a plurality of spines, such as up to twelve, each with a plurality of electrodes, such as up to sixteen. Each spine may have cabling with embedded coiled wires such that each electrode is attached through the sheath to one of the wires.Type: GrantFiled: August 12, 2015Date of Patent: March 3, 2020Assignee: Biosense Webster (Israel) Ltd.Inventors: Shubhayu Basu, Mario A. Solis, Asterio Pata, Paul Tran
-
Patent number: 10362991Abstract: This disclosure is directed to a catheter having a basket-shaped electrode assembly at the distal end of the catheter body formed from a plurality of spines with electrodes. The basket-shaped electrode assembly structural elements at the proximal and distal ends. The structural elements may maintain the spines in a desired spatial relationship with each other and/or may couple the distal ends of the spines to a pulling member. The basket-shaped electrode assembly has expanded arrangement in which the spines bow outwards and a collapsed arrangement in which the spines are arranged generally along a longitudinal axis of the catheter body.Type: GrantFiled: April 4, 2016Date of Patent: July 30, 2019Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.Inventors: Paul Tran, Mario A. Solis
-
Patent number: 10314505Abstract: This disclosure is directed to a catheter having an asymmetric basket-shaped electrode assembly at the distal end of the catheter body formed from a plurality of spines with electrodes. The plurality of spines are radially distributed across a first circumferential portion. One or more counter spines are radially distributed across a remaining second circumferential portion. Diagnostic electrodes are arrayed across the spines, while the counter spines may have one or more reference electrodes.Type: GrantFiled: March 15, 2016Date of Patent: June 11, 2019Assignee: Biosense Webster (Israel) Ltd.Inventors: Stuart Williams, Paul Tran, Mario A Solis
-
Publication number: 20190167140Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: ApplicationFiled: February 4, 2019Publication date: June 6, 2019Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Patent number: 10194818Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: GrantFiled: October 9, 2017Date of Patent: February 5, 2019Assignee: Biosense Webster (Israel) Ltd.Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Publication number: 20180028084Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: ApplicationFiled: October 9, 2017Publication date: February 1, 2018Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Patent number: 9782099Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: GrantFiled: December 31, 2014Date of Patent: October 10, 2017Assignee: Biosense Webster (Israel) Ltd.Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Publication number: 20170281268Abstract: This disclosure is directed to a catheter having a basket-shaped electrode assembly at the distal end of the catheter body formed from a plurality of spines with electrodes. The basket-shaped electrode assembly structural elements at the proximal and distal ends. The structural elements may maintain the spines in a desired spatial relationship with each other and/or may couple the distal ends of the spines to a pulling member.Type: ApplicationFiled: April 4, 2016Publication date: October 5, 2017Inventors: Paul Tran, Mario A. Solis
-
Publication number: 20170265812Abstract: This disclosure is directed to a catheter having an asymmetric basket-shaped electrode assembly at the distal end of the catheter body formed from a plurality of spines with electrodes. The plurality of spines are radially distributed across a first circumferential portion. One or more counter spines are radially distributed across a remaining second circumferential portion. Diagnostic electrodes are arrayed across the spines, while the counter spines may have one or more reference electrodes.Type: ApplicationFiled: March 15, 2016Publication date: September 21, 2017Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Publication number: 20160183877Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.Type: ApplicationFiled: December 31, 2014Publication date: June 30, 2016Inventors: Stuart Williams, Paul Tran, Mario A. Solis
-
Patent number: 9371003Abstract: A control system for a vehicle includes first and second modules. The first module receives input from an operator of the vehicle via an input device, wherein the operator input includes a change to an operating parameter of a vehicle system. The second module selectively adjusts a resistance of the input device based on the operator input and a predetermined threshold. A method for controlling a vehicle includes receiving input from an operator of the vehicle via an input device, wherein the operator input includes a change to an operating parameter of a vehicle system, and selectively adjusting a resistance of the input device based on the operator input and a predetermined threshold.Type: GrantFiled: April 15, 2011Date of Patent: June 21, 2016Assignee: Denso International America, Inc.Inventors: Daniel Paul Tran, Justin McBride, Christopher Alan Arms, Bo Sun, Carolina Mary Rigney, Nhi Van Pham, Martin Ezequiel Nespolo, Silviu Pala
-
Publication number: 20150342532Abstract: This disclosure is directed to a catheter having a basket-shaped electrode assembly with a high electrode density. The basket-shaped electrode assembly may have a plurality of spines, such as up to twelve, each with a plurality of electrodes, such as up to sixteen. Each spine may have cabling with embedded coiled wires such that each electrode is attached through the sheath to one of the wires.Type: ApplicationFiled: August 12, 2015Publication date: December 3, 2015Inventors: Shubhayu Basu, Mario A. Solis, Asterio Pata, Paul Tran
-
Publication number: 20120253593Abstract: A control system for a vehicle includes first and second modules. The first module receives input from an operator of the vehicle via an input device, wherein the operator input includes a change to an operating parameter of a vehicle system. The second module selectively adjusts a resistance of the input device based on the operator input and a predetermined threshold. A method for controlling a vehicle includes receiving input from an operator of the vehicle via an input device, wherein the operator input includes a change to an operating parameter of a vehicle system, and selectively adjusting a resistance of the input device based on the operator input and a predetermined threshold.Type: ApplicationFiled: April 15, 2011Publication date: October 4, 2012Applicant: DENSO INTERNATIONAL AMERICA, INC.Inventors: Daniel Paul Tran, Justin McBride, Christopher Alan Arms, Bo Sun, Carolina Mary Giannotti, Nhi Van Pham, Martin Ezequiel Nespolo, Silviu Pala
-
Patent number: 8271211Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.Type: GrantFiled: December 9, 2009Date of Patent: September 18, 2012Assignee: Pivotal Systems CorporationInventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
-
Patent number: 8271210Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.Type: GrantFiled: December 9, 2009Date of Patent: September 18, 2012Assignee: Pivotal Systems CorporationInventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
-
Patent number: 8265888Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.Type: GrantFiled: December 9, 2009Date of Patent: September 11, 2012Assignee: Pivotal Systems CorporationInventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
-
Publication number: 20110137582Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.Type: ApplicationFiled: December 9, 2009Publication date: June 9, 2011Applicant: Pivotal Systems CorporationInventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski