Patents by Inventor Paul V. Arszman

Paul V. Arszman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7181915
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the gas flow path of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector the is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a centerbody.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: February 27, 2007
    Assignee: General Electric Company
    Inventors: John Frederick Ackermann, Paul V. Arszman, Bangalore A. Nagaraj, Craig D. Young, Nicole Justis
  • Patent number: 7157114
    Abstract: A process for depositing pure platinum on a substrate is disclosed. In accordance with one embodiment, the process comprises applying a solution consisting of Pt(acetylacetonate)2 and ethanol or acetone onto a substrate and wrapping at least a portion of the substrate with aluminum foil. The process further comprises heating the substrate wrapped with the aluminum foil to about 300° C. at a rate of about 10–25° C. per minute and then holding at about 300° C. for about 1 hour, wherein the Pt(acetylacetonate)2 decomposes to deposit pure platinum on the substrate.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: January 2, 2007
    Assignee: General Electric Company
    Inventors: John F. Ackerman, Paul V. Arszman
  • Patent number: 7003959
    Abstract: A high temperature splash plate for use in the combustor of a gas turbine engine that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the surface of the splash plate of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector then is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The surface reflects radiation in the direction of the turbine back into the hot gas flow path. The reflected radiation is not focused onto any other hardware component.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: February 28, 2006
    Assignee: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj, Craig D. Young, Nicole Justis
  • Patent number: 6925811
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the flow path surface of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector then is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a combustor wall. The surface reflects radiation back into the hot gas flow path.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: Nicole Justis, John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj, Craig D. Young
  • Patent number: 6926496
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the gas flow path of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector the is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a turbine nozzle. The surface reflects radiation back into the hot gas flow path.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: August 9, 2005
    Assignee: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj
  • Patent number: 6893737
    Abstract: A low cost aluminide process for moderate temperature applications. A gas turbine engine component is cleaned and coated with a layer of metal, generally aluminum, containing paint. The metal containing paint layer is heated to a first temperature for a first period of time in an air environment to volatilize the solvents in the paint. The metal containing paint layer is heated to a second temperature for a second period of time in an oxygen-free atmosphere to volatilize the solvents in the paint. The now metal layer and component are heated to a third temperature for a third period of time to interdiffuse the metal and the metal of the component. The component and diffusion layer are then cooled to ambient temperature.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: May 17, 2005
    Assignee: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Andrew J. Skoog
  • Patent number: 6884524
    Abstract: A low cost chromide and chromide/aluminide process for moderate temperature applications. A gas turbine engine component is cleaned and coated with a layer of metal, generally chromium or chromium and aluminum, containing paint. The metal containing paint layer is heated to a first temperature for a first period of time in an air environment to volatilize the solvents in the paint. The metal containing paint layer is heated to a second temperature for a second period of time in an oxygen-free atmosphere to volatilize the solvents in the paint. The now metal layer and component are heated to a third temperature for a third period of time to interdiffuse the metal and the metal of the component. The component and diffusion layer are then cooled to ambient temperature.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: April 26, 2005
    Assignee: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Andrew J. Skoog
  • Publication number: 20040185295
    Abstract: A low cost aluminide process for moderate temperature applications. A gas turbine engine component is cleaned and coated with a layer of metal, generally aluminum, containing paint. The metal containing paint layer is heated to a first temperature for a first period of time in an air environment to volatilize the solvents in the paint. The metal containing paint layer is heated to a second temperature for a second period of time in an oxygen-free atmosphere to volatilize the solvents in the paint. The now metal layer and component are heated to a third temperature for a third period of time to interdiffuse the metal and the metal of the component. The component and diffusion layer are then cooled to ambient temperature.
    Type: Application
    Filed: December 27, 2002
    Publication date: September 23, 2004
    Applicant: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Andrew J. Skoog
  • Publication number: 20040123598
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the flow path surface of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector then is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a combustor wall. The surface reflects radiation back into the hot gas flow path.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Applicant: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj, Craig D. Young, Nicole Justis
  • Publication number: 20040126496
    Abstract: A low cost chromide and chromide/aluminide process for moderate temperature applications. A gas turbine engine component is cleaned and coated with a layer of metal, generally chromium or chromium and aluminum, containing paint. The metal containing paint layer is heated to a first temperature for a first period of time in an air environment to volatilize the solvents in the paint. The metal containing paint layer is heated to a second temperature for a second period of time in an oxygen-free atmosphere to volatilize the solvents in the paint. The now metal layer and component are heated to a third temperature for a third period of time to interdiffuse the metal and the metal of the component. The component and diffusion layer are then cooled to ambient temperature.
    Type: Application
    Filed: December 27, 2002
    Publication date: July 1, 2004
    Applicant: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Andrew J. Skoog
  • Publication number: 20040126229
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the gas flow path of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector the is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a turbine nozzle. The surface reflects radiation back into the hot gas flow path.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Applicant: General Electric Company
    Inventors: John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj
  • Publication number: 20040123599
    Abstract: A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the gas flow path of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector the is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a centerbody.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: John F. Ackermann, Paul V. Arszman, Bangalore A. Nagaraj, Craig Young, Nicole Justis