Patents by Inventor Paul V. MOONJELLY
Paul V. MOONJELLY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250021105Abstract: Systems and methods for autonomous vehicle control are provided. A remote computing system includes a communication interface coupled to a network, a map database storing centralized map data, a processor, and a memory storing instructions that, when executed by the processor, cause the processor to perform operations. The operations include: receiving a transport request including a first location and a second location; selecting a first vehicle of a plurality of vehicles for the transport request based on at least one of the transport request and a vehicle status; transmitting the centralized map data to the first vehicle; causing the first vehicle to complete the transport request, including causing the first vehicle to autonomously transport from the first location to the second location and causing the first vehicle to collect first sensor data; receiving the first sensor data in real-time; and, updating the centralized map data with the first sensor data.Type: ApplicationFiled: September 30, 2024Publication date: January 16, 2025Applicant: Cummins Inc.Inventors: Ninad Ghike, Paul V. Moonjelly, Jeffrey David Selwyn Diwakar Abraham
-
Publication number: 20240254909Abstract: Disclosed herein are devices, systems, and methods relating to balancing engine performance and engine emissions of an engine in a vehicle in real time. In an example, a method can include sensing operation data indicative of an engine response during a current engine operation. The current ending operation can include a supervisory control of engine emissions. The method can include evaluating a response model to determine engine performance deviation data corresponding to an expected baseline engine performance and an expected current engine performance at the current engine operation. This evaluation can be performed via controller. This evaluation can be based on the operation data. The method can include generating and setting a performance constraint in response to evaluating the response model. The performance constraint can be set such that the engine performance deviation data is maintained at a controls objective that inhibits deterioration of the engine performance over time.Type: ApplicationFiled: May 18, 2022Publication date: August 1, 2024Inventors: Kartavya Neema, Chinmay Rao, Rohit A. Zope, Gayatri Adi, Paul V. Moonjelly
-
Patent number: 11891938Abstract: Systems and methods for controlling a performance variable of an engine system are provided. An apparatus includes a response model circuit structured to apply a constraint to a response model that represents a relationship regarding a manipulated variable or a relationship between the performance variable and the manipulated variable. The apparatus further includes an optimization circuit structured to determine a target for the manipulated variable via the response model such that the target of the manipulated variable satisfies the constraint of the response model. The performance variable is indicative of performance of operation of the engine system and the manipulated variable is capable of affecting the performance variable. Operation of the engine system is adjusted based upon the target of the manipulated variable by controlling at least one of a fuel system or an air handling system of the engine system.Type: GrantFiled: July 11, 2022Date of Patent: February 6, 2024Assignee: Cummins Inc.Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
-
Publication number: 20220364492Abstract: Systems and methods for controlling a performance variable of an engine system are provided. An apparatus includes a response model circuit structured to apply a constraint to a response model that represents a relationship regarding a manipulated variable or a relationship between the performance variable and the manipulated variable. The apparatus further includes an optimization circuit structured to determine a target for the manipulated variable via the response model such that the target of the manipulated variable satisfies the constraint of the response model. The performance variable is indicative of performance of operation of the engine system and the manipulated variable is capable of affecting the performance variable. Operation of the engine system is adjusted based upon the target of the manipulated variable by controlling at least one of a fuel system or an air handling system of the engine system.Type: ApplicationFiled: July 11, 2022Publication date: November 17, 2022Applicant: Cummins Inc.Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
-
Patent number: 11401854Abstract: Systems and methods for optimizing a performance variable for an engine system. The method includes applying constraints of manipulated variables as well as performance variables, mechanical constraints and other engine responses to response models. The response models each represent a piecewise linear relationship between the manipulated variables and other engine responses including performance variables and constraints. The method also comprises determining an optimal target for each of the manipulated variables by using a quasi-simplex optimization process on the response models. The optimal targets of the manipulated variables correspond to an optimal value of the performance variable.Type: GrantFiled: March 2, 2018Date of Patent: August 2, 2022Assignee: Cummins Inc.Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
-
Patent number: 11053881Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.Type: GrantFiled: October 14, 2015Date of Patent: July 6, 2021Assignee: Cummins Inc.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Patent number: 11035310Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: GrantFiled: October 14, 2015Date of Patent: June 15, 2021Assignee: Cummins Inc.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Patent number: 11028753Abstract: An apparatus includes an engine module, an in-cylinder content module, and an engine out NOx module. The engine module is structured to interpret engine in-cylinder data regarding an operating condition within a cylinder of an engine, wherein the engine in-cylinder data includes an engine torque, an engine speed, a rail pressure, and a start-of-injection. The in-cylinder content module is structured to interpret at least one additional in-cylinder data point regarding the operating condition within the cylinder of the engine. The engine out NOx module is structured to determine an engine out NOx amount responsive to the engine in-cylinder data and the at least one additional in-cylinder data point.Type: GrantFiled: February 9, 2016Date of Patent: June 8, 2021Assignee: Cummins, Inc.Inventors: Phanindra V. Garimella, Aniket Gupta, Ming-Feng Hsieh, Paul V. Moonjelly, Anant Puri, Gokul Vishwanathan
-
Patent number: 11002203Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: GrantFiled: October 14, 2015Date of Patent: May 11, 2021Assignee: Cummins Inc.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Patent number: 10947914Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: GrantFiled: October 14, 2015Date of Patent: March 16, 2021Assignee: Cummins Inc.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Patent number: 10808635Abstract: Unique engine controls and apparatuses, methods and systems relating to the same are disclosed. One embodiment is method which utilizes an in-cylinder [O2] mass fraction model to generate exhaust gas recirculation (EGR) fraction references for both transient and steady state operating conditions. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.Type: GrantFiled: September 30, 2019Date of Patent: October 20, 2020Assignee: Cummins Inc.Inventors: Quresh Sutarwala, Gayatri Adi, Paul V. Moonjelly
-
Patent number: 10774778Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.Type: GrantFiled: October 14, 2015Date of Patent: September 15, 2020Assignee: Cummins Inc.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Publication number: 20200040795Abstract: Systems and methods for optimizing a performance variable for an engine system. The method includes applying constraints of manipulated variables as well as performance variables, mechanical constraints and other engine responses to response models. The response models each represent a piecewise linear relationship between the manipulated variables and other engine responses including performance variables and constraints. The method also comprises determining an optimal target for each of the manipulated variables by using a quasi-simplex optimization process on the response models. The optimal targets of the manipulated variables correspond to an optimal value of the performance variable.Type: ApplicationFiled: March 2, 2018Publication date: February 6, 2020Applicant: Cummins Inc.Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
-
Publication number: 20200025121Abstract: Unique engine controls and apparatuses, methods and systems relating to the same are disclosed. One embodiment is method which utilizes an in-cylinder [O2] mass fraction model to generate exhaust gas recirculation (EGR) fraction references for both transient and steady state operating conditions. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.Type: ApplicationFiled: September 30, 2019Publication date: January 23, 2020Inventors: Quresh Sutarwala, Gayatri Adi, Paul V. Moonjelly
-
Publication number: 20180274475Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.Type: ApplicationFiled: October 14, 2015Publication date: September 27, 2018Applicant: CUMMINS INC.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Publication number: 20180274467Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: ApplicationFiled: October 14, 2015Publication date: September 27, 2018Applicant: CUMMINS INC.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Publication number: 20180266343Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: ApplicationFiled: October 14, 2015Publication date: September 20, 2018Applicant: CUMMINS INC.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Publication number: 20180266340Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.Type: ApplicationFiled: October 14, 2015Publication date: September 20, 2018Applicant: CUMMINS INC.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Publication number: 20180266348Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.Type: ApplicationFiled: October 14, 2015Publication date: September 20, 2018Applicant: CUMMINS INC.Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
-
Patent number: 9903306Abstract: A system and method for measuring fuel pressure decreases in a fuel accumulator caused by a fuel injector of an internal combustion engine is provided. The system includes the ability to stop a fuel flow to a fuel accumulator of the engine. Pressure signals are transmitted to a control system of the engine until the fuel pressure in the fuel accumulator drops by a predetermined amount, at which time fuel flow is re-enabled. The pressure signals are then analyzed to determine the amount or quantity of fuel delivered by each fuel injector. The system and method maintain engine and emissions performance by limiting the amount of fuel pressure decrease in the fuel accumulator.Type: GrantFiled: February 8, 2013Date of Patent: February 27, 2018Assignee: CUMMINS INC.Inventors: David M. Carey, Paul V. Moonjelly