Patents by Inventor Paul V. Neale

Paul V. Neale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180368774
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 27, 2018
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Publication number: 20180360493
    Abstract: Applicators for applying an on-skin assembly to skin of a host and methods of their use and/or manufacture are provided. An applicator includes an insertion assembly configured to insert at least a portion of the on-skin assembly into the skin of the host, a housing configured to house the insertion assembly, the housing comprising an aperture through which the on-skin assembly can pass, an actuation member configured to, upon activation, cause the insertion assembly to insert at least the portion of the on-skin assembly into the skin of the host, and a sealing element configured to provide a sterile barrier and a vapor barrier between an internal environment of the housing and an external environment of the housing.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 20, 2018
    Inventors: Joseph J. Baker, Philip Thomas Pupa, Timothy Joseph Goldsmith, Jonathan Bodnar, Jason Halac, John Michael Gray, Neal Davis Johnston, Justen Deering England, Peter C. Simpson, Paul V. Neale, Jennifer Blackwell, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Mark Douglas Kempkey, Young Woo Lee, Warren Terry, Patrick John Castagna, David A. Keller, Randall Scott Koplin, Andrew Joncich
  • Publication number: 20180360357
    Abstract: Applicators for applying an on-skin assembly to skin of a host and methods of their use and/or manufacture are provided. An applicator includes an insertion assembly configured to insert at least a portion of the on-skin assembly into the skin of the host, a housing configured to house the insertion assembly, the housing comprising an aperture through which the on-skin assembly can pass, an actuation member configured to, upon activation, cause the insertion assembly to insert at least the portion of the on-skin assembly into the skin of the host, and a sealing element configured to provide a sterile barrier and a vapor barrier between an internal environment of the housing and an external environment of the housing.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 20, 2018
    Inventors: Joseph J. Baker, Philip Thomas Pupa, Timothy Joseph Goldsmith, Jonathan Bodnar, Jason Halac, John Michael Gray, Neal Davis Johnston, Justen Deering England, Peter C. Simpson, Paul V. Neale, Jennifer Blackwell, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Mark Douglas Kempkey, Young Woo Lee, Warren Terry, Patrick John Castagna, David A. Keller, Randall Scott Koplin, Andrew Joncich
  • Publication number: 20180360358
    Abstract: Applicators for applying an on-skin assembly to skin of a host and methods of their use and/or manufacture are provided. An applicator includes an insertion assembly configured to insert at least a portion of the on-skin assembly into the skin of the host, a housing configured to house the insertion assembly, the housing comprising an aperture through which the on-skin assembly can pass, an actuation member configured to, upon activation, cause the insertion assembly to insert at least the portion of the on-skin assembly into the skin of the host, and a sealing element configured to provide a sterile barrier and a vapor barrier between an internal environment of the housing and an external environment of the housing.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 20, 2018
    Inventors: Joseph J. Baker, Philip Thomas Pupa, Timothy Joseph Goldsmith, Jonathan Bodnar, Jason Halac, John Michael Gray, Neal Davis Johnston, Justen Deering England, Peter C. Simpson, Paul V. Neale, Jennifer Blackwell, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Mark Douglas Kempkey, Young Woo Lee, Warren Terry, Patrick John Castagna, David A. Keller, Randall Scott Koplin, Andrew Joncich
  • Publication number: 20180185587
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20180160949
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Inventors: Mark Brister, Paul V. Neale, James H. Brauker, James Patrick Thrower, Paul V. Goode, JR.
  • Publication number: 20180140236
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: January 22, 2018
    Publication date: May 24, 2018
    Inventors: Mark C. Brister, Paul V. Neale, James R. Petisce, James Patrick Thrower, Sean Saint, John Nolting
  • Publication number: 20180116570
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20180116572
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Patent number: 9937293
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: April 10, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9931065
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with pushbutton activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing, all in one smooth motion. Some embodiments contemplate engagement of the transmitter with the housing after release of the applicator.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 3, 2018
    Assignee: DeXCom, Inc.
    Inventors: Jack Pryor, Sebastian Bohm, David DeRenzy, Jason Halac, Daniel S. Kline, Phong Lieu, Adam J. Livingston, Steve Masterson, Paul V. Neale, Peter C. Simpson, Antonio Joao Ubach
  • Publication number: 20180055361
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 1, 2018
    Inventors: Mark C. Brister, Paul V. Neale, Peter C. Simpson, James H. Brauker, James Patrick Thrower, Mark Shults, Rathbun K. Rhodes, Paul V. Goode, JR., Arnold L. Holmquist
  • Publication number: 20180049682
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 22, 2018
    Inventors: Mark C. Brister, Paul V. Neale, Sean T. Saint, James R. Petisce, Thomas F. McGee, Daniel Shawn Codd, David Michael Peterson, Daniel S. Kline
  • Publication number: 20180014762
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 18, 2018
    Inventors: Mark C. Brister, Paul V. Neale, James H. Brauker
  • Publication number: 20180000388
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: August 22, 2017
    Publication date: January 4, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Patent number: 9833176
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 5, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Sean Saint, James R. Petisce, Thomas F. McGee, Daniel Shawn Codd, David Michael Petersen, Daniel S. Kline
  • Patent number: 9833143
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: December 5, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Peter C. Simpson, James H. Brauker, James Patrick Thrower, Mark Shults, Rathbun K. Rhodes, Paul V. Goode, Jr., Arnold L. Holmquist
  • Patent number: 9814414
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 14, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Sean Saint, James R. Petisce, James Patrick Thrower, Apurv Ullas Kamath, Daniel S. Kline, John A. Guerre, Daniel Shawn Codd, Thomas F. McGee, David Michael Petersen
  • Patent number: 9801572
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: October 31, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Paul V. Neale, James H. Brauker
  • Patent number: 9763608
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: September 19, 2017
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares