Patents by Inventor Paul V. Trescony

Paul V. Trescony has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10646700
    Abstract: The invention includes a shunt for at least partial implantation into a patient that includes an elongated conduit having at least one lumen therethrough, that includes a proximal end for receipt of bodily fluids for flow through the shunt and a distal end for discharge of the bodily fluids from the shunt, and a long term source of at least one occlusion resistant agent, wherein said at least a portion of the at least one occlusion resistant agent can permeate through at least a portion of the elongated conduit. The invention also includes kits and systems.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 12, 2020
    Assignee: MEDTRONICS PS MEDICAL, INC.
    Inventors: Paul V. Trescony, Edouard Koullick
  • Publication number: 20180154122
    Abstract: The invention includes a shunt for at least partial implantation into a patient that includes an elongated conduit having at least one lumen therethrough, that includes a proximal end for receipt of bodily fluids for flow through the shunt and a distal end for discharge of the bodily fluids from the shunt, and a long term source of at least one occlusion resistant agent, wherein said at least a portion of the at least one occlusion resistant agent can permeate through at least a portion of the elongated conduit. The invention also includes kits and systems.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 7, 2018
    Inventors: Paul V. Trescony, Edouard Koullick
  • Patent number: 9861799
    Abstract: A shunt for at least partial implantation into a patient that includes an elongated conduit having at least one lumen therethrough and a second lumen concentric about the first lumen along at least part of the first lumen, that includes a proximal end for receipt of bodily fluids for flow through the shunt and a distal end for discharge of the bodily fluids from the shunt, and a long term source of at least one occlusion resistant agent, wherein said at least a portion of the at least one occlusion resistant agent can permeate through at least a portion of the elongated conduit. The invention also includes kits and systems.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: January 9, 2018
    Assignee: MEDTRONIC PS MEDICAL, INC.
    Inventors: Paul V. Trescony, Edouard Koullick
  • Patent number: 8445278
    Abstract: The present invention provides an electrophoretic system, apparatus, and method of use thereof for the preparation of a tissue-derived bioprosthesis.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 21, 2013
    Assignee: Medtronic, Inc.
    Inventors: Frank J. L. Everaerts, Mark W. Torrianni, Frans M. Everaerts, Paul V. Trescony, Wilfred den Hartog
  • Patent number: 7759099
    Abstract: Apparatus and methods for seeding an implantable medical device, such as a vascular prosthesis, with cells, such as endothelial cells, are described. The invention supports techniques for seeding a luminal surface of the device with axial centrifugation. Cells are introduced in suspension into the lumen of the device. The introduction of the cells may occur after a blood centrifugation product, such as platelet-poor plasma, is applied to the luminal surface. After the cells are introduced, the device is then subjected to centrifugation around a longitudinal axis defined by the lumen. Axial centrifugation causes the cells to concentrate toward and adhere to the luminal surface. Shortly after axial centrifugation, the seeded device can be presented for implantation in a patient. The implantable medical device may be inserted into a protective sleeve prior to seeding the device with cells, and the sleeve may or may not be removed prior to implantation.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: July 20, 2010
    Assignee: Kips Bay Medical, Inc.
    Inventors: Michael F. Wolf, Laurie A. Yunker, Paul V. Trescony
  • Patent number: 7759120
    Abstract: Apparatus and methods for seeding an implantable medical device, such as a vascular prosthesis, with cells, such as endothelial cells, are described. The invention supports techniques for seeding a luminal surface of the device with axial centrifugation. Cells are introduced in suspension into the lumen of the device. The introduction of the cells may occur after a blood centrifugation product, such as platelet-poor plasma, is applied to the luminal surface. After the cells are introduced, the device is then subjected to centrifugation around a longitudinal axis defined by the lumen. Axial centrifugation causes the cells to concentrate toward and adhere to the luminal surface. Shortly after axial centrifugation, the seeded device can be presented for implantation in a patient. The implantable medical device may be inserted into a protective sleeve prior to seeding the device with cells, and the sleeve may or may not be removed prior to implantation.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: July 20, 2010
    Assignee: Kps Bay Medical, Inc.
    Inventors: Michael F. Wolf, Laurie A. Yunker, Paul V. Trescony
  • Publication number: 20100042039
    Abstract: A shunt for at least partial implantation into a patient that includes an elongated conduit having at least one lumen therethrough and a second lumen concentric about the first lumen along at least part of the first lumen, that includes a proximal end for receipt of bodily fluids for flow through the shunt and a distal end for discharge of the bodily fluids from the shunt, and a long term source of at least one occlusion resistant agent, wherein said at least a portion of the at least one occlusion resistant agent can permeate through at least a portion of the elongated conduit. The invention also includes kits and systems.
    Type: Application
    Filed: October 28, 2009
    Publication date: February 18, 2010
    Inventors: Paul V. Trescony, Edouard Koullick
  • Publication number: 20090324803
    Abstract: A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. One method of the present invention includes immobilizing a biomolecule comprising an unsubstituted amide moiety on a biomaterial surface. Another method of the present invention includes immobilizing a biomolecule on a biomaterial surface comprising an unsubstituted amide moiety. Still another method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties in solution, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 31, 2009
    Inventors: James R. Keogh, Paul V. Trescony
  • Publication number: 20090018386
    Abstract: The invention is directed to apparatus and methods for seeding an implantable medical device, such as a vascular prosthesis, with cells, such as endothelial cells. The invention supports techniques for seeding a luminal surface of the device with axial centrifugation. Cells are introduced in suspension into the lumen of the device, and the device is subjected to centrifugation around a longitudinal axis defined by the lumen. Axial centrifugation causes the cells to concentrate toward the luminal surface. Shortly after axial centrifugation, the seeded device can be presented for implantation in a patient.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 15, 2009
    Inventors: Michael F. Wolf, Laurie A. Yunker, Paul V. Trescony
  • Patent number: 7435250
    Abstract: A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 14, 2008
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Richard H. Comben, Michael F. Hoey, Rahul Mehra, Jon M. Ocel, Robert Pearson, Paul V. Trescony, Scott E. Jahns
  • Publication number: 20080082036
    Abstract: The invention includes a shunt for at least partial implantation into a patient that includes an elongated conduit having at least one lumen therethrough, that includes a proximal end for receipt of bodily fluids for flow through the shunt and a distal end for discharge of the bodily fluids from the shunt, and a long term source of at least one occlusion resistant agent, wherein said at least a portion of the at least one occlusion resistant agent can permeate through at least a portion of the elongated conduit. The invention also includes kits and systems.
    Type: Application
    Filed: April 25, 2006
    Publication date: April 3, 2008
    Applicant: Medtronic, Inc.
    Inventors: Paul V. Trescony, Edouard Koullick
  • Patent number: 7122027
    Abstract: The present invention generally relates to medical devices. Specifically, the invention pertains to implantable medical devices that produces gaseous agents from precursors and releases them into the body. More specifically, the invention provides for the controlled release of the gaseous agent to the body to produce a local or systemic therapeutic effect.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: October 17, 2006
    Assignee: Medtronic, Inc.
    Inventors: Paul V. Trescony, Kenneth E. Rohly, James R. Keogh, Darrell F. Untereker, Naim S. Istephanous
  • Patent number: 7122356
    Abstract: A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. One method of the present invention includes immobilizing a biomolecule comprising an unsubstituted amide moiety on a biomaterial surface. Another method of the present invention includes immobilizing a biomolecule on a biomaterial surface comprising an unsubstituted amide moiety. Still another method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties in solution, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: October 17, 2006
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Paul V. Trescony
  • Patent number: 6916318
    Abstract: A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: July 12, 2005
    Assignee: Medtronic, Inc.
    Inventors: David E Francischelli, Richard H. Comben, Michael F Hoey, Rahul Mehra, Jon M. Ocel, Robert Pearson, Paul V. Trescony, Scott E. Jahns
  • Publication number: 20040086543
    Abstract: A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. One method of the present invention includes immobilizing a biomolecule comprising an unsubstituted amide moiety on a biomaterial surface. Another method of the present invention includes immobilizing a biomolecule on a biomaterial surface comprising an unsubstituted amide moiety. Still another method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties in solution, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Application
    Filed: July 15, 2003
    Publication date: May 6, 2004
    Applicant: Medtronic, Inc.
    Inventors: James R. Keogh, Paul V. Trescony
  • Publication number: 20040039417
    Abstract: This invention is an electrical stimulation apparatus for delivering an electrical field or electrical current over a predetermined period of time to a vascular tissue (150) in order to stimulate a cell initiated thrombolytic peptide response in cells within the vascular tissue. The electrical stimulation apparatus includes an electrical field or electrical current generating unit including a power support, a control mechanism interconnected with the power supply, and a plurality of electrodes designed to generate an electrical field or electrical current proximal to, or within to the vascular tissue. The amplitude of the electrical field or electrical current delivered to or generated proximal to, or within the vascular tissue, and the duration of the period of delivery are sufficient to stimulate production of thrombolytic peptides in the vascular tissue.
    Type: Application
    Filed: April 15, 2003
    Publication date: February 26, 2004
    Applicant: Medtronic, Inc.
    Inventors: Orhan Soykan, Maura G. Donovan, Curtis D. Deno, Terrell M. Williams, Paul V. Trescony, Timothy H. Robinson
  • Patent number: 6617142
    Abstract: Methods are provided for forming a coating of an immobilized biomolecule on a surface of a medical device to impart improved biocompatibility for contacting tissue and bodily fluids. A biomolecule such as a glycoprotein having an unsubstituted amide moiety is combined with an amine forming agent to form an amine-functional biomolecule. The amine-functional biomolecule is combined with a medical device surface having a chemical moiety such as aldehyde, epoxide, isocyanate, 1,2-dicarbonyl, phosphate, sulphate or carboxylate to form a chemical bond immobilizing the biomolecule on the surface. The chemical bond may be combined with a reducing agent or a stabilizing agent. The aldehyde moiety may be formed by combining a periodate with a 2-aminoalcohol moiety or a 1,2-dihydroxy moiety. Alternatively, an amine-functional medical device surface is combined with a biomolecule having a chemical moiety that reacts with an amine moiety.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: September 9, 2003
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Paul V. Trescony
  • Publication number: 20030036789
    Abstract: A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
    Type: Application
    Filed: October 10, 2002
    Publication date: February 20, 2003
    Inventors: David E. Francischelli, Richard H. Comben, Michael F. Hoey, Rahul Mehra, Jon M. Ocel, Robert Pearson, Paul V. Trescony, Scott E. Jahns
  • Publication number: 20030009127
    Abstract: The present invention generally relates to medical devices. Specifically, the invention pertains to implantable medical devices that produces gaseous agents from precursors and releases them into the body. More specifically, the invention provides for the controlled release of the gaseous agent to the body to produce a local or systemic therapeutic effect.
    Type: Application
    Filed: May 23, 2002
    Publication date: January 9, 2003
    Inventors: Paul V. Trescony, Kenneth E. Rohly, James R. Keogh, Darrell F. Untereker, Naim S. Istephanous
  • Patent number: 6488680
    Abstract: A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: December 3, 2002
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Richard H. Comben, Michael F. Hoey, Rahul Mehra, Jon M. Ocel, Robert Pearson, Paul V. Trescony, Scott E. Jahns