Patents by Inventor Paul W. Burke

Paul W. Burke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8388357
    Abstract: An apparatus is described for burn-in and/or functional testing of microelectronic circuits of unsingulated wafers. A large number of power, ground, and signal connections can be made to a large number of contacts on a wafer. The apparatus has a cartridge that allows for fanning-in of electric paths. A distribution board has a plurality of interfaces that are strategically positioned to provide a dense configuration. The interfaces are connected through flexible attachments to an array of first connector modules. Each one of the first connector modules can be independently connected to a respective one of a plurality of second connector modules, thereby reducing stresses on a frame of the apparatus. Further features include for example a piston that allows for tight control of forces exerted by terminals onto contacts of a wafer.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 5, 2013
    Assignee: Aehr Test Systems
    Inventors: Donald P. Richmond, II, Kenneth W. Deboe, Frank O. Uher, Jovan Jovanovic, Scott E. Lindsey, Thomas T. Maenner, Patrick M. Shepherd, Jeffrey L. Tyson, Mark C. Carbone, Paul W. Burke, Doan D. Cao, James F. Tomic, Long V. Vu
  • Publication number: 20120113556
    Abstract: An apparatus is described for burn-in and/or functional testing of microelectronic circuits of unsingulated wafers. A large number of power, ground, and signal connections can be made to a large number of contacts on a wafer. The apparatus has a cartridge that allows for fanning-in of electric paths. A distribution board has a plurality of interfaces that are strategically positioned to provide a dense configuration. The interfaces are connected through flexible attachments to an array of first connector modules. Each one of the first connector modules can be independently connected to a respective one of a plurality of second connector modules, thereby reducing stresses on a frame of the apparatus. Further features include for example a piston that allows for tight control of forces exerted by terminals onto contacts of a wafer.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 10, 2012
    Applicant: Aehr Test Systems
    Inventors: Donald P. Richmond, II, Kenneth W. Deboe, Frank O. Uher, Jovan Jovanovic, Scott E. Lindsey, Thomas T. Maenner, Patrick M. Shepherd, Jeffrey L. Tyson, Mark C. Carbone, Paul W. Burke, Doan D. Cao, James F. Tomic, Long V. Vu
  • Patent number: 8118618
    Abstract: An apparatus is described for burn-in and/or functional testing of microelectronic circuits of unsingulated wafers. A large number of power, ground, and signal connections can be made to a large number of contacts on a wafer. The apparatus has a cartridge that allows for fanning-in of electric paths. A distribution board has a plurality of interfaces that are strategically positioned to provide a dense configuration. The interfaces are connected through flexible attachments to an array of first connector modules. Each one of the first connector modules can be independently connected to a respective one of a plurality of second connector modules, thereby reducing stresses on a frame of the apparatus. Further features include for example a piston that allows for tight control of forces exerted by terminals onto contacts of a wafer.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: February 21, 2012
    Assignee: Aehr Test Systems
    Inventors: Donald P. Richmond, II, Kenneth W. Deboe, Frank O. Uher, Jovan Jovanovic, Scott E. Lindsey, Thomas T. Maenner, Patrick M. Shepherd, Jeffrey L. Tyson, Mark C. Carbone, Paul W. Burke, Doan D. Cao, James F. Tomic, Long V. Vu
  • Publication number: 20110161461
    Abstract: A partitioned network has several subdomains (1, 2, 3), each having a respective access server (10, 20, 30) and each serving a plurality of end users (11, 12; 21, 22; 31, 32). Each access server (10, 20, 30) is connected to a respective content cache (13, 23) or a set of such caches (130, 131, 132), which stores content and downloads it to end users on request. An alternative routing (19, 29) may be available between an access server (10) and a content cache (23) other than its associated cache (13), for use in exceptional circumstances. All the content caches (13, 23), are given the same IP address, “W.X.Y.Z”. Each access server (10, 20, 30) operates exclusively in a geographic sub-domain, and recognises the IP address W.X.Y.Z as relating uniquely to its respective associated content cache (13), (23, 23). This means that the configuration of each access server (10,20, 30) to handle content caching/distribution/streaming can be the same regardless of its location in the network.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 30, 2011
    Inventors: Benjamin P. Niven-Jenkins, Paul W. Burke
  • Publication number: 20110145437
    Abstract: A partitioned network has several subdomains (1, 2, 3,) each having a respective access server (10, 20, 30) and each serving a plurality of end users (11, 12; 21, 22; 31, 32). Each access server (10, 20, 30) is connected to a respective content cache (13, 23) or a set of such caches (130, 131, 132), which stores content and downloads it to end users on request. An alternative routing (19, 29) may be available between an access server (10) and a content cache (23) other than its associated cache (13), for use in exceptional circumstances. All the content caches (13, 23), are given the same IP address, “W.X.Y.Z”. Each access server (10, 20, 30) operates exclusively in a geographic sub-domain, and recognises the IP address W.X.Y.Z as relating uniquely to its respective associated content cache 13, (23, 23) This means that the configuration of each access server (10, 20, 30) to handle content caching/distribution/streaming can be the same regardless of its location in the network.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 16, 2011
    Inventors: Benjamin Paul Niven-Jenkins, Paul W Burke
  • Publication number: 20100213957
    Abstract: An apparatus is described for burn-in and/or functional testing of microelectronic circuits of unsingulated wafers. A large number of power, ground, and signal connections can be made to a large number of contacts on a wafer. The apparatus has a cartridge that allows for fanning-in of electric paths. A distribution board has a plurality of interfaces that are strategically positioned to provide a dense configuration. The interfaces are connected through flexible attachments to an array of first connector modules. Each one of the first connector modules can be independently connected to a respective one of a plurality of second connector modules, thereby reducing stresses on a frame of the apparatus. Further features include for example a piston that allows for tight control of forces exerted by terminals onto contacts of a wafer.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 26, 2010
    Applicant: Aehr Test Systems
    Inventors: Donald P. Richmond, II, Kenneth W. Deboe, Frank O. Uher, Jovan Jovanovic, Scott E. Lindsey, Thomas T. Maenner, Patrick M. Shepherd, Jeffrey L. Tyson, Mark C. Carbone, Paul W. Burke, Doan D. Cao, James F. Tomic, Long V. Vu