Patents by Inventor Paul Wai-Man SIU

Paul Wai-Man SIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11285456
    Abstract: This invention relates to a Cu-BTC MOF which is water stable. The Cu-BTC MOF has open coordination sites and has been post synthesis modified by partially occupying the open sites with a ligand such as acetonitrile (CH3CN). The resultant MOF retains at least 40% of its as synthesized surface area after exposure to liquid water at 60° C. for 6 hours. This is an unexpected result versus the MOF which has not been post treated with ligands such as acetonitrile. This MOF can be used to abate contaminants such as ammonia in gas streams and especially air streams.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: March 29, 2022
    Assignee: NuMat Technologies, Inc.
    Inventor: Paul Wai-Man Siu
  • Publication number: 20210106940
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The absorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Glenn M. TOM, Paul Wai-Man SIU, Jose ARNO, Omar K. FARHA, Ross VERPLOEGH
  • Patent number: 10940426
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The adsorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: March 9, 2021
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Glenn M. Tom, Paul Wai-Man Siu, Jose Arno, Omar K. Farha, Ross Verploegh
  • Publication number: 20210046447
    Abstract: This invention relates to a Cu-BTC MOF which is water stable. The Cu-BTC MOF has open coordination sites and has been post synthesis modified by partially occupying the open sites with a ligand such as acetonitrile (CH3CN). The resultant MOF retains at least 40% of its as synthesized surface area after exposure to liquid water at 60° C. for 6 hours. This is an unexpected result versus the MOF which has not been post treated with ligands such as acetonitrile. This MOF can be used to abate contaminants such as ammonia in gas streams and especially air streams.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Applicant: Numat Technologies Inc.
    Inventor: Paul Wai-Man Siu
  • Patent number: 10898847
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The adsorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: January 26, 2021
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Glenn M. Tom, Paul Wai-Man Siu, Jose Arno, Omar K. Farha, Ross Verploegh
  • Patent number: 10260148
    Abstract: A porous material, including metal organic frameworks (MOFs) and porous organic polymer (POP), with reactivity with or sorptive affinity towards (a) electronic gas to substantially remove or abate electronic gas in an electronic gas-containing effluent, or (b) contaminants in a stream of electronic gas to substantially remove the contaminants from a stream of electronic gas and increase the purity of said electronic gas, or (c) trace mercury contaminant in a hydrocarbon stream to substantially remove said mercury contaminant and increase the purity of said hydrocarbon stream. MOFs are the coordination product of metal ions and multidentate organic ligands, whereas POPs are the product of polymerization between organic monomers.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: April 16, 2019
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Paul Wai-Man Siu, Mitchell Hugh Weston
  • Publication number: 20190091620
    Abstract: A method of adsorbing a highly reactive gas onto an adsorbent material comprising adsorbing the highly reactive gas to the adsorbent material. The absorbent material comprises at least one Lewis basic functional group, or pores of a size to hold a single molecule of the highly reactive gas, or inert moieties which are provided to the adsorbent material at the same time at the same time as the highly reactive gas, prior to adsorbing the highly reactive gas or after adsorbing the highly reactive gas, or the highly reactive gas reacts with moieties of the adsorbent material resulting in passivation of the adsorbent material. A rate of decomposition of the adsorbed highly reactive gas is lower than a rate of decomposition for the neat gas at equal volumetric loadings and equal temperatures for both the adsorbed highly reactive gas and the neat gas.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 28, 2019
    Inventors: Glenn M. TOM, Paul Wai-Man SIU, Jose ARNO, Omar K. FARHA, Ross VERPLOEGH
  • Patent number: 9751074
    Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: September 5, 2017
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Han Sung Kim, Mitchell Hugh Weston, Patrick Fuller, Paul Wai-Man Siu
  • Publication number: 20170203277
    Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.
    Type: Application
    Filed: April 5, 2017
    Publication date: July 20, 2017
    Inventors: Han Sung Kim, Mitchell Hugh Weston, Patrick Fuller, Paul Wai-Man Siu
  • Patent number: 9427722
    Abstract: Adsorption systems providing a capacity of at least 200 g/L for oxygen-containing mixtures, or an oxygen-nitrogen selectivity of at least 1.4:1 or at least 1:2 with an adsorbed capacity of at least 0.6 mmol/g at 4 bar and 22° C.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: August 30, 2016
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Mitchell Hugh Weston, Patrick Fuller, Paul Wai-Man Siu
  • Publication number: 20160160348
    Abstract: A porous material, including metal organic frameworks (MOFs) and porous organic polymer (POP), with reactivity with or sorptive affinity towards (a) electronic gas to substantially remove or abate electronic gas in an electronic gas-containing effluent, or (b) contaminants in a stream of electronic gas to substantially remove the contaminants from a stream of electronic gas and increase the purity of said electronic gas, or (c) trace mercury contaminant in a hydrocarbon stream to substantially remove said mercury contaminant and increase the purity of said hydrocarbon stream. MOFs are the coordination product of metal ions and multidentate organic ligands, whereas POPs are the product of polymerization between organic monomers.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 9, 2016
    Inventors: Paul Wai-Man SIU, Mitchell Hugh WESTON
  • Publication number: 20150352519
    Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Han Sung Kim, Mitchell Hugh Weston, Patrick Fuller, Paul Wai-Man Siu
  • Patent number: 9138720
    Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: September 22, 2015
    Assignee: NUMAT TECHNOLOGIES, INC.
    Inventors: Han Sung Kim, Mitchell Hugh Weston, Patrick Fuller, Paul Wai-Man Siu
  • Publication number: 20150034500
    Abstract: A metal organic framework (MOF) includes a coordination product of a metal ion and an at least bidentate organic ligand, where the metal ion and the organic ligand are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas. A porous organic polymer (POP) includes polymerization product from at least a plurality of organic monomers, where the organic monomers are selected to provide a deliverable adsorption capacity of at least 70 g/l for an electronic gas.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventors: Han Sung KIM, Mitchell Hugh WESTON, Patrick FULLER, Paul Wai-Man SIU