Patents by Inventor Paul Warren Tillberg

Paul Warren Tillberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11408890
    Abstract: The present invention leverages the techniques for expansion microscopy (ExM) to provide improved high-throughput super-resolution whole-organ imaging methodology to image protein architectures over whole organs with nanoscale resolution by using high-throughput microscopes in combination with samples that have been iteratively expanded more than once, in a method referred to herein as “iterative expansion microscopy” (iExM). In the ExM method, biological samples of interest are permeated with a swellable material that results in the sample becoming embedded in the swellable material, and then the sample can be expanded isotropically in three dimensions The process of iteratively expanding the samples can be applied to samples that have been already expanded using ExM techniques one or more additional times to iteratively expand them such that, for example, a 5-fold expanded specimen can be expanded again 3- to 4-fold, resulting in as much as a 17- to 19-fold or more linear expansion.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: August 9, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward Stuart Boyden, Jae-Byum Chang, Fei Chen, Paul Warren Tillberg
  • Patent number: 10563257
    Abstract: The invention provides in situ nucleic acid sequencing to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ sequencing of nucleic acids as well as new methods for fluorescent in situ sequencing (FISSEQ) in a new process referred to herein as “expansion sequencing” (ExSEQ).
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 18, 2020
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Edward Stuart Boyden, Fei Chen, Shahar Alon, George Church, Paul Warren Tillberg, Adam Henry Marblestone, Evan R. Daugharthy
  • Patent number: 10317321
    Abstract: The invention provides a method termed protein retention ExM (proExM), in which proteins, rather than labels, are anchored to the swellable gel, using a cross-linking molecule. This proExM strategy can be used to perform nanoscale imaging of immunostained cells and tissues as well as samples expressing various FPs as fluorescent signals from genetically encoded fluorescent proteins and/or conventional fluorescently labeled secondary antibodies and streptavidin that are directly anchored to the gel are preserved even when subjected to the nonspecific proteolytic digestion.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 11, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Paul Warren Tillberg, Fei Chen, Edward Stuart Boyden, Chih-Chieh Yu
  • Patent number: 10309879
    Abstract: The present invention relates to an enlarged sample of interest for microscopy and methods for enlarging a sample of interest and the optical imaging of a sample of interest with resolution better than the classical microscopy diffraction limit, by synthesizing a swellable polymer network within a sample, it can be physically expanded, resulting in physical magnification.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: June 4, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Fei Chen, Paul Warren Tillberg, Edward Stuart Boyden
  • Publication number: 20190055597
    Abstract: The invention provides in situ nucleic acid sequencing to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ sequencing of nucleic acids as well as new methods for fluorescent in situ sequencing (FISSEQ) in a new process referred to herein as “expansion sequencing” (ExSEQ).
    Type: Application
    Filed: August 23, 2018
    Publication date: February 21, 2019
    Inventors: Edward Stuart Boyden, Fei Chen, Shahar Alon, George Church, Paul Warren Tillberg, Adam Henry Marblestone, Evan R. Daugharthy
  • Patent number: 10059990
    Abstract: The invention provides in situ nucleic acid sequencing to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ sequencing of nucleic acids as well as new methods for fluorescent in situ sequencing (FISSEQ) in a new process referred to herein as “expansion sequencing” (ExSEQ).
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: August 28, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward Stuart Boyden, Fei Chen, Shahar Alon, George Church, Paul Warren Tillberg, Adam Marblestone, Evan Daugharthy
  • Publication number: 20170089811
    Abstract: The invention provides a method termed protein retention ExM (proExM), in which proteins, rather than labels, are anchored to the swellable gel, using a cross-linking molecule. This proExM strategy can be used to perform nanoscale imaging of immunostained cells and tissues as well as samples expressing various FPs as fluorescent signals from genetically encoded fluorescent proteins and/or conventional fluorescently labeled secondary antibodies and streptavidin that are directly anchored to the gel are preserved even when subjected to the nonspecific proteolytic digestion.
    Type: Application
    Filed: August 5, 2016
    Publication date: March 30, 2017
    Inventors: Paul Warren Tillberg, Fei Chen, Edward Stuart Boyden, Chih-Chieh Yu
  • Publication number: 20160304952
    Abstract: The invention provides in situ nucleic acid sequencing to be conducted in biological specimens that have been physically expanded. The invention leverages the techniques for expansion microscopy (ExM) to provide new methods for in situ sequencing of nucleic acids as well as new methods for fluorescent in situ sequencing (FISSEQ) in a new process referred to herein as “expansion sequencing” (ExSEQ).
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Inventors: Edward Stuart Boyden, Fei Chen, Shahar Alon, George Church, Paul Warren Tillberg, Adam Marblestone, Evan Daugharthy
  • Publication number: 20160305856
    Abstract: The present invention leverages the techniques for expansion microscopy (ExM) to provide improved high-throughput super-resolution whole-organ imaging methodology to image protein architectures over whole organs with nanoscale resolution by using high-throughput microscopes in combination with samples that have been iteratively expanded more than once, in a method referred to herein as “iterative expansion microscopy” (iExM). In the ExM method, biological samples of interest are permeated with a swellable material that results in the sample becoming embedded in the swellable material, and then the sample can be expanded isotropically in three dimensions The process of iteratively expanding the samples can be applied to samples that have been already expanded using ExM techniques one or more additional times to iteratively expand them such that, for example, a 5-fold expanded specimen can be expanded again 3- to 4-fold, resulting in as much as a 17- to 19-fold or more linear expansion.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Inventors: Edward Stuart Boyden, Jae-Byum Chang, Fei Chen, Paul Warren Tillberg
  • Publication number: 20160116384
    Abstract: The present invention relates to an enlarged sample of interest for microscopy and methods for enlarging a sample of interest and the optical imaging of a sample of interest with resolution better than the classical microscopy diffraction limit, by synthesizing a swellable polymer network within a sample, it can be physically expanded, resulting in physical magnification.
    Type: Application
    Filed: February 20, 2015
    Publication date: April 28, 2016
    Inventors: Fei Chen, Paul Warren Tillberg, Edward Stuart Boyden