Patents by Inventor Paul Wiener

Paul Wiener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11705821
    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: July 18, 2023
    Assignee: GAN SYSTEMS INC.
    Inventors: Xuechao Liu, Paul Wiener
  • Publication number: 20230075393
    Abstract: Apparatus, systems and methods for load-adaptive 3D wireless charging are disclosed. In a 3D charging system of an example embodiment, features comprise a 3D coil design that provides magnetic field distribution coverage for a 3D charging space, e.g. hemi-spherical space/volume; a push-pull class EF2 PA with EMI filter and transmitter circuitry that provides constant current to the 3D coil, with current direction, phase and timing control capability to adapt to load conditions; reactance shift detection circuitry comprising a voltage sensor, current sensor and phase detector and hardware for fast, real-time, computation of reactance and comparison to upper and lower limits for load-adaptive reactance tuning and for auto-protection; and a switchable tuning capacitor network arrangement of shunt and series capacitors configured for auto-tuning of input impedance, e.g. in response to a X detection trigger signal, which enables both coarse-tuning and uniform fine-tuning steps over an extended reactance range.
    Type: Application
    Filed: February 5, 2021
    Publication date: March 9, 2023
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20220385195
    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.
    Type: Application
    Filed: August 4, 2022
    Publication date: December 1, 2022
    Inventors: Xuechao LIU, Paul WIENER
  • Patent number: 11463012
    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: October 4, 2022
    Assignee: GaN Systems Inc.
    Inventors: Xuechao Liu, Paul Wiener
  • Publication number: 20220302846
    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 22, 2022
    Inventors: Xuechao LIU, Paul WIENER
  • Publication number: 20220247219
    Abstract: A wireless power transfer (WPT) system is provided to drive multiple resonator coils utilizing one power amplifier. The WPT system may include a power amplifier, a differential 1:N power divider, impedance inversion circuits and multiple resonator coils. The WPT system may further include auto-tuning circuits with sensors that facilitate the efficient driving of the multiple resonator coils. As well, there is provided various 3D shaped coil topologies that are comprised of two or more separate coils. The 3D coil topology designs each provide a particular 3D magnetic field for wireless charging.
    Type: Application
    Filed: January 20, 2022
    Publication date: August 4, 2022
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20210184500
    Abstract: High efficiency resonator coils for large gap resonant wireless power transfer (WPT), and a coil design methodology are disclosed. Resonator coils comprise a coil topology defined by coil parameters in which turn dimensions, such as trace widths and spacings of each turn, are configured to reduce or minimize a variance of the z component of magnetic field, over an area of a charging plane at a specified distance, or distance range, from the coil. A Tx resonator coil comprises a capacitor arrangement of tuning and network-matching capacitors for improved coil-to-coil efficiency and end-to-end WPT system performance, e.g. for applications such as through-wall WPT, in the range of tens of watts to at least hundreds of watts. Planar resonator coil topologies are compatible with fabrication using low cost PCB technology, e.g. with multi-layer metal, to reduce losses and improve thermal performance.
    Type: Application
    Filed: November 10, 2020
    Publication date: June 17, 2021
    Inventors: Tiefeng SHI, Paul WIENER
  • Publication number: 20090248004
    Abstract: Methods and systems for treatment of tissue (e.g., the dermal-hypodermal region) with one or more wavelength are disclosed. Electromagnetic radiation devices and methods for lypolysis and/or coagulation of blood and/or treatment of water and/or treatment of skin are disclosed.
    Type: Application
    Filed: March 2, 2009
    Publication date: October 1, 2009
    Applicant: PALOMAR MEDICAL TECHNOLOGIES, INC.
    Inventors: Gregory B. Altshuler, Steve Armstrong, Andrei V. Erofeev, Christopher Gaal, Thomas McNall, Paul Wiener
  • Patent number: 6222716
    Abstract: A method and apparatus for providing a more reliable protection device and an improved PIC power integrated switch. Accordingly, the over-temperature status of the switch as well as the overcurrent status of each of a plurality of ports of the switch are detected. If there is over-temperature, ports with the overcurrent status are identified as a potential cause. These ports are then switched off. After a predetermined waiting time period during which the switch temperature is expected to decrease, the over-temperature status of the switch is again checked. If the over-temperature disappears, then the ports with non-overcurrent status remain on. However, if the over-temperature persists, then all of the ports are turned off. The improved PIC switch thus increases the dynamic operation range of the conventional PIC switch, while ensuring normal operations.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: April 24, 2001
    Inventors: Justin Chiang, Adrian I. Cogan, Paul Wiener