Patents by Inventor Paulo A. Garcia

Paulo A. Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12059197
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 13, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Patent number: 11974800
    Abstract: The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 7, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michael B. Sano, Rafael V. Davalos, John L Robertson, Paulo A. Garcia, Robert E. Neal
  • Patent number: 11952568
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: April 9, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Publication number: 20240074804
    Abstract: The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: Robert E. Neal, Paulo A. Garcia, Rafael V. Davalos, Peter Callas
  • Publication number: 20240008911
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 11, 2024
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 11737810
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: August 29, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Publication number: 20230212551
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Application
    Filed: March 10, 2023
    Publication date: July 6, 2023
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Publication number: 20230157759
    Abstract: The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
    Type: Application
    Filed: January 24, 2023
    Publication date: May 25, 2023
    Inventors: Paulo A. Garcia, Rafael V. Davalos
  • Patent number: 11655466
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 23, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Patent number: 11607271
    Abstract: The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 21, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Paulo A. Garcia, Rafael V. Davalos
  • Patent number: 11453873
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John H. Rossmeisl, John L. Robertson, Robert E. Neal, II
  • Publication number: 20220151688
    Abstract: Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Paulo A. Garcia, Christopher B. Arena, Michael B. Sano, Rafael V. Davalos
  • Patent number: 11272979
    Abstract: Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: March 15, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Paulo A. Garcia, Christopher B. Arena, Michael B. Sano, Rafael V. Davalos
  • Patent number: 11254926
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: February 22, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, John H. Rossmeisl, John L. Robertson
  • Publication number: 20220022945
    Abstract: Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.
    Type: Application
    Filed: October 5, 2018
    Publication date: January 27, 2022
    Inventors: Paulo A. Garcia, Christopher B. Arena, Michael B. Sano, Rafael V. Davalos
  • Publication number: 20210186600
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 24, 2021
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Patent number: 10959772
    Abstract: The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: March 30, 2021
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John L. Robertson, John H. Rossmeisl, Robert E. Neal, II
  • Publication number: 20210022795
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 10828085
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 10, 2020
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia
  • Patent number: 10828086
    Abstract: Methods for treating tissue with irreversible electroporation and immunotherapy are described. The methods include placing a probe in tissue within a human body, wherein the probe has at least a first electrode, applying a plurality of electrical pulses through the first electrode and a second electrode, causing irreversible electroporation (IRE) of the tissue within a target ablation zone, and administering one or more exogenous agents into the tissue within the target ablation zone or to the human, thereby stimulating or otherwise modulating an immune system response within the body.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: November 10, 2020
    Inventors: Rafael V. Davalos, John H. Rossmeisl, Paulo A. Garcia