Patents by Inventor Pavan O. Gupta

Pavan O. Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11442544
    Abstract: A force transducer for an electronic device can be operated in a drive mode and a sense mode simultaneously. In particular, the force transducer can provide haptic output while simultaneously receiving force input from a user. The force transducer is primarily defined by a monolithic piezoelectric body, a ground electrode, a drive electrode, and a sense electrode. The ground electrode and the drive electrode each include multiple electrically-electrically conductive sheets that extend into the monolithic body; the electrically conductive sheets of the ground electrode and the drive electrode are interdigitally engaged. The sense electrode of the force transducer is typically disposed on an exterior surface of the monolithic body.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: September 13, 2022
    Assignee: Apple Inc.
    Inventors: Joseph C. Doll, Pavan O. Gupta, Teera Songatikamas, Adam J. Monkowski
  • Patent number: 11275475
    Abstract: A compliant material, such as a conductive foam, is positioned in the dielectric or capacitive gap between drive and sense electrodes and/or other conductive elements of a capacitive and/or other force sensor, such as a TFT or other display element and a sensor assembly. The compliant material prevents damage by preventing and/or cushioning contact. The compliant material may be conductive. By being conductive and being positioned between the electrodes while still being separated from one or more of the electrodes, the compliant material also shortens the effective electrical distance between the electrodes. As a result, the force sensor may be more sensitive than would otherwise be possible while being less vulnerable to damage.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: March 15, 2022
    Assignee: Apple Inc.
    Inventors: Daniel J. Bechstein, Collin R. Petty, Martin P. Grunthaner, Andrew W. Joyce, John R. Matthews, Pavan O. Gupta, Albert Lin
  • Publication number: 20210124460
    Abstract: A compliant material, such as a conductive foam, is positioned in the dielectric or capacitive gap between drive and sense electrodes and/or other conductive elements of a capacitive and/or other force sensor, such as a TFT or other display element and a sensor assembly. The compliant material prevents damage by preventing and/or cushioning contact. The compliant material may be conductive. By being conductive and being positioned between the electrodes while still being separated from one or more of the electrodes, the compliant material also shortens the effective electrical distance between the electrodes. As a result, the force sensor may be more sensitive than would otherwise be possible while being less vulnerable to damage.
    Type: Application
    Filed: January 5, 2021
    Publication date: April 29, 2021
    Inventors: Daniel J. Bechstein, Collin R. Petty, Martin P. Grunthaner, Andrew W. Joyce, John R. Matthews, Pavan O. Gupta, Albert Lin
  • Patent number: 10921943
    Abstract: A compliant material, such as a conductive foam, is positioned in the dielectric or capacitive gap between drive and sense electrodes and/or other conductive elements of a capacitive and/or other force sensor, such as a TFT or other display element and a sensor assembly. The compliant material prevents damage by preventing and/or cushioning contact. The compliant material may be conductive. By being conductive and being positioned between the electrodes while still being separated from one or more of the electrodes, the compliant material also shortens the effective electrical distance between the electrodes. As a result, the force sensor may be more sensitive than would otherwise be possible while being less vulnerable to damage.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Daniel J. Bechstein, Collin R. Petty, Martin P. Grunthaner, Andrew W. Joyce, John R. Matthews, Pavan O. Gupta, Albert Lin
  • Patent number: 10866683
    Abstract: A device includes a housing defining part of an interior volume and an opening to the interior volume; a cover mounted to the housing to cover the opening and further define the interior volume; a display mounted within the interior volume and viewable through the cover; and a system in package (SiP) mounted within the interior volume. The SiP includes a self-capacitance sense pad adjacent a first surface of the SiP; a set of solder structures attached to a second surface of the SiP, the second surface opposite the first surface; and an IC coupled to the self-capacitance sense pad and configured to output, at one or more solder structures in the set of solder structures, a digital value related to a measured capacitance of the self-capacitance sense pad. The SiP is mounted within the interior volume with the first surface positioned closer to the cover than the second surface.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: December 15, 2020
    Assignee: Apple Inc.
    Inventors: Pavan O. Gupta, Andrew W. Joyce, Benedict Drevniok, Mo Li, David S. Graff, Albert Lin, Julian K. Shutzberg, Hojjat Seyed Mousavi
  • Publication number: 20200348795
    Abstract: A compliant material, such as a conductive foam, is positioned in the dielectric or capacitive gap between drive and sense electrodes and/or other conductive elements of a capacitive and/or other force sensor, such as a TFT or other display element and a sensor assembly. The compliant material prevents damage by preventing and/or cushioning contact. The compliant material may be conductive. By being conductive and being positioned between the electrodes while still being separated from one or more of the electrodes, the compliant material also shortens the effective electrical distance between the electrodes. As a result, the force sensor may be more sensitive than would otherwise be possible while being less vulnerable to damage.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 5, 2020
    Inventors: Daniel J. Bechstein, Collin R. Petty, Martin P. Grunthaner, Andrew W. Joyce, John R. Matthews, Pavan O. Gupta, Albert Lin
  • Publication number: 20200064952
    Abstract: A device includes a housing defining part of an interior volume and an opening to the interior volume; a cover mounted to the housing to cover the opening and further define the interior volume; a display mounted within the interior volume and viewable through the cover; and a system in package (SiP) mounted within the interior volume. The SiP includes a self-capacitance sense pad adjacent a first surface of the SiP; a set of solder structures attached to a second surface of the SiP, the second surface opposite the first surface; and an IC coupled to the self-capacitance sense pad and configured to output, at one or more solder structures in the set of solder structures, a digital value related to a measured capacitance of the self-capacitance sense pad. The SiP is mounted within the interior volume with the first surface positioned closer to the cover than the second surface.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 27, 2020
    Inventors: Pavan O. Gupta, Andrew W. Joyce, Benedict Drevniok, Mo Li, David S. Graff, Albert Lin, Julian K. Shutzberg, Hojjat Seyed Mousavi
  • Publication number: 20180314331
    Abstract: A force transducer for an electronic device can be operated in a drive mode and a sense mode simultaneously. In particular, the force transducer can provide haptic output while simultaneously receiving force input from a user. The force transducer is primarily defined by a monolithic piezoelectric body, a ground electrode, a drive electrode, and a sense electrode. The ground electrode and the drive electrode each include multiple electrically-electrically conductive sheets that extend into the monolithic body; the electrically conductive sheets of the ground electrode and the drive electrode are interdigitally engaged. The sense electrode of the force transducer is typically disposed on an exterior surface of the monolithic body.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 1, 2018
    Inventors: Joseph C. Doll, Pavan O. Gupta, Teera Songatikamas, Adam J. Monkowski
  • Patent number: 9949390
    Abstract: An electronic device may include a device housing and a display carried by the device housing. The electronic device may also include an actuator carried between the device housing and the display. The actuator may include an actuator body having an actuator bottom and a sidewall extending upwardly therefrom, a first guide member carried by the actuator bottom and spaced inwardly from adjacent portions of the sidewall to define a channel, and at least one coil carried by the sidewall. The actuator may also include a magnet being moveable within the channel and an actuator top coupled to the magnet and that includes a second guide member cooperating with the first guide member. The electronic device may also include a controller configured to drive the at least one coil to relatively move the actuator bottom and actuator top to thereby deform the display.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: April 17, 2018
    Assignee: APPLE INC.
    Inventors: Joseph C. Doll, Teera Songatikamas, Adam J. Monkowski, Pavan O. Gupta
  • Publication number: 20180081441
    Abstract: An electronic device is configured to provide localized haptic feedback to a user on one or more regions or sections of a surface of the electronic device. The localized haptic feedback is provided by an array of piezoelectric haptic actuators below the surface of the electronic device. Actuators within the array of piezoelectric haptic actuators are separately controllable by a control circuit layer. The control circuit layer includes control circuitry, a master flexible circuit which passes between rows of actuators, and an array of slave flexible circuits. Each slave flexible circuit is connected to the master flexible circuit and an actuator. In further examples, the array of piezoelectric haptic actuators provides a unified structure for detecting touch and force inputs.
    Type: Application
    Filed: June 13, 2017
    Publication date: March 22, 2018
    Inventors: James E. Pedder, Supratik Datta, Karan Jain, Jui-Ming Yang, Pavan O. Gupta, Robert W. Rumford, Wei Lin, Xiaofan Niu, Xiaonan Wen
  • Publication number: 20170364158
    Abstract: In some embodiments, a haptic actuator includes piezoelectric material and a pattern of voltage electrodes coupled to a surface of the piezoelectric material. The voltage electrodes are individually controllable to supply voltage to different portions of the piezoelectric material. Different sections of the piezoelectric material are operable to deflect, producing haptic output at those locations, in response to the application of the voltage. Differing voltages may be provided to one or more of the voltage electrodes to affect the location of the deflection, and thus the haptic output. In various embodiments, a haptic output system incorporates a sealed haptic element. The sealed haptic element includes a piezoelectric component that is coupled to one or more flexes and is sealed and/or enclosed by the flex(es) and an encapsulation or sealing material.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 21, 2017
    Inventors: Xiaonan Wen, Wei Lin, James E. Pedder, Xiaofan Niu, Nathan K. Gupta, Po-Jui Chen, Robert W. Rumford, Pavan O. Gupta, Jui-Ming Yang