Patents by Inventor Paveen Apiratikul

Paveen Apiratikul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230358951
    Abstract: An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
    Type: Application
    Filed: March 6, 2023
    Publication date: November 9, 2023
    Applicant: Skorpios Technologies, Inc.
    Inventors: Paveen Apiratikul, Damien Lambert
  • Patent number: 11624872
    Abstract: An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: April 11, 2023
    Assignee: Skorpios Technologies, Inc.
    Inventors: Paveen Apiratikul, Damien Lambert
  • Publication number: 20220196911
    Abstract: An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 23, 2022
    Inventors: Paveen Apiratikul, Damien Lambert
  • Patent number: 11360263
    Abstract: An optical device comprises a substrate, a waveguide disposed on the substrate, and a spot size converter (SSC) disposed on the substrate. The waveguide comprises a shoulder and a ridge. The SSC comprises a shoulder and a ridge. The ridge of the waveguide is aligned to a first stage of the ridge of the SSC. The waveguide is made of a first material. The shoulder and the ridge of the SSC are made of a second material. The second material is different from the first material.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 14, 2022
    Assignee: Skorpios Technologies. Inc.
    Inventors: Majid Sodagar, Paveen Apiratikul
  • Patent number: 11194092
    Abstract: An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 7, 2021
    Assignee: SKORPIOS TECHNOLOGIES, INC.
    Inventors: Paveen Apiratikul, Damien Lambert
  • Patent number: 11079549
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: August 3, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Patent number: 10928588
    Abstract: A device for optical communication is described. The device comprises two transceivers integrated on one chip. A first transceiver can be used with existing optical-communication architecture. As a more advanced optical-communication architecture becomes adopted, the device can be switched from using the first transceiver to using a second transceiver to communicate using the more advanced optical-communication architecture.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: February 23, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20200400891
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Application
    Filed: April 3, 2020
    Publication date: December 24, 2020
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20200301072
    Abstract: A method is provided for forming an optical device having a waveguide and a spot size converter (SSC). The method includes providing a crystalline semiconductor region and a non-crystalline semiconductor region on a substrate. The crystalline semiconductor region is coupled to the non-crystalline semiconductor region. The method also includes simultaneously etching the non-crystalline semiconductor region and the crystalline semiconductor region using a same etch mask to form a spot size converter coupled a waveguide. The waveguide has a ridge over a shoulder, and the spot size converter has a ridge over a shoulder.
    Type: Application
    Filed: January 30, 2020
    Publication date: September 24, 2020
    Inventors: Majid Sodagar, Paveen Apiratikul
  • Publication number: 20200233150
    Abstract: An exemplary multi quantum well structure may include a silicon platform having a pit formed in the silicon platform, a chip positioned inside the pit, a first waveguide formed in the chip, and a second waveguide formed in the silicon platform. The pit may be defined at least in part by a sidewall and a base. The chip may include a first side and a first recess in the first side. The first side may be defined in part by a first cleaved or diced facet. The first recess may be defined in part by a first etched facet. The first waveguide may be configured to guide an optical beam to pass through the first etched facet. The second waveguide may be configured to guide the optical beam to pass through the sidewall. The second waveguide may be optically aligned with the first waveguide.
    Type: Application
    Filed: November 21, 2019
    Publication date: July 23, 2020
    Inventors: Paveen Apiratikul, Damien Lambert
  • Patent number: 10649148
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 12, 2020
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20190170944
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 6, 2019
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20190113680
    Abstract: A device for optical communication is described. The device comprises two transceivers integrated on one chip. A first transceiver can be used with existing optical-communication architecture. As a more advanced optical-communication architecture becomes adopted, the device can be switched from using the first transceiver to using a second transceiver to communicate using the more advanced optical-communication architecture.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Applicant: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero