Patents by Inventor Pavel A. Shostak

Pavel A. Shostak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220239337
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of amplitude shift keying (ASK) wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Application
    Filed: January 28, 2021
    Publication date: July 28, 2022
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20220239342
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Application
    Filed: January 28, 2021
    Publication date: July 28, 2022
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20220140864
    Abstract: A wireless power transmission system includes, at least, a first transmission antenna and a second transmission antenna, both in electrical connection with a common power conditioning system of the system. The first transmission antenna transmits output power and includes a first pole and a second pole, while the second transmission antenna also transmits the output power and includes a third pole and a fourth pole. The first and second transmission antennas are in electrical connection with the power conditioning system via at least one of the first pole and the second pole and at least one of the third pole and the fourth pole. Further, at least one of the first pole and the second pole is in electrical connection with at least one of the third pole and the fourth pole.
    Type: Application
    Filed: August 24, 2021
    Publication date: May 5, 2022
    Inventors: Alberto Peralta, Md. Nazmul Alam, Pavel Shostak
  • Publication number: 20220131419
    Abstract: The present application relates to an apparatus which comprises a wireless power transmission system. This system comprises features which allow it to transfer more power wirelessly to multiple devices simultaneously, each at extended distances than other systems operating in the same frequency range. The system including heat dissipation features, allowing the system to operate effectively in elevated-temperature environments and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also may include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system may include features to reduce electromagnetic interference (EMI) and/or specially shaped components with magnetic/ferrimagnetic properties that enhance performance.
    Type: Application
    Filed: July 5, 2021
    Publication date: April 28, 2022
    Inventors: Pavel Shostak, Jason Luzinski, Md. Nazmul Alam, Mark D. Melone, Matt Zamborsky, Alberto Peralta
  • Patent number: 11316271
    Abstract: Various embodiments of a multi-mode antenna are described. The antenna is preferably constructed having a first inductor coil and a second inductor coil. A plurality of shielding materials are positioned throughout the antenna to minimize interference of the magnetic fields that emanate from the coils from surrounding materials. The antenna comprises a coil control circuit having at least one of an electric filter and an electrical switch configured to modify the electrical impedance of either or both the first and second coils.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: April 26, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Vinit Singh, Ajit Rajagopalan, Alberto Peralta, Md. Nazmul Alam, Christine A. Frysz, Jason Luzinski, Glenn Riese, Jacob Babcock, Pavel Shostak
  • Patent number: 11271430
    Abstract: The present application relates to an apparatus which comprises a wireless power transfer (WPT) system. This system comprises features which allow it to transfer more power wirelessly at extended distances than other systems operating in the same frequency range. The system possesses heat dissipation features; these features allow it to operate effectively in elevated-temperature environments, and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also might include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system can also comprise adaptations to reduce electromagnetic interference (EMI), and can comprise specially shaped components with magnetic/ferrimagnetic properties that enhance performance. Other potential features include power conditioning by combining, within one circuit or one board, multiple elements that protect against excessive current, over-voltage, and/or reverse voltage.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: March 8, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Pavel Shostak, Oleg Los, Unnati Wadkar, Jason Luzinski, Nazmul Alam, Mark D. Melone, Matt Zamborsky, Jacob Babcock, Alberto Peralta, Christine Frysz
  • Publication number: 20220029467
    Abstract: Eyewear and receptacles for housing such eyewear include components of a wireless power transfer system. The eyewear includes a receiver system for receiving power from a transmission system associated with the receptacle(s). The receiver system includes at least one receiver antenna, for receiving wireless power from the transmission system, and a repeater antenna for repeating the wireless power signal to the receiver antenna. The receiver antenna is positioned proximate to a first arm of the eyewear and the repeater is positioned proximate to a second arm of the eyewear. Positioning of the receiver and repeater antennas allows for positional freedom of the eyewear and/or the arms of the eyewear, when mechanically received by the receptacle.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Inventors: Pratik Halyal, Pavel Shostak, Alberto Peralta
  • Publication number: 20210408842
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Application
    Filed: May 10, 2021
    Publication date: December 30, 2021
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20210408844
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a transmission integrated circuit which includes a damping circuit and a transmitter controller, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 30, 2021
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20210408686
    Abstract: Various embodiments of a multi-mode antenna are described. The antenna is preferably constructed having a first inductor coil and a second inductor coil. A plurality of shielding materials are positioned throughout the antenna to minimize interference of the magnetic fields that emanate from the coils from surrounding materials. The antenna comprises a coil control circuit having at least one of an electric filter and an electrical switch configured to modify the electrical impedance of either or both the first and second coils.
    Type: Application
    Filed: February 12, 2021
    Publication date: December 30, 2021
    Inventors: Vinit Singh, Ajit Rajagopalan, Alberto Peralta, Md. Nazmul Alam, Christine A. Frysz, Jason Luzinski, Glenn Riese, Jacob Babcock, Pavel Shostak
  • Publication number: 20210408840
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems may include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. Additionally or alternatively, such wireless power transfer systems may include voltage isolation circuits, to isolate components of the wireless receiver systems from high voltage signals intended for a load associated with the receiver. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Application
    Filed: June 28, 2020
    Publication date: December 30, 2021
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20210408841
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems may include voltage isolation circuits, to isolate components of the wireless receiver systems from high voltage signals intended for a load associated with the receiver. The voltage isolation circuit includes at least two capacitors, wherein the at least two capacitors are in electrical parallel with respect to the controller capacitor. The voltage isolation circuit is configured to regulate the AC wireless power signal to have a voltage input range for input to the receiver controller and isolate a voltage at the receiver controller from a voltage at the load associated with the wireless receiver system. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining durability and lifecycle of components of the wireless receiver system(s).
    Type: Application
    Filed: June 28, 2020
    Publication date: December 30, 2021
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20210367451
    Abstract: Various embodiments of a wireless connector system are described. The system has a transmitter module and a receiver module that are configured to wirelessly transmit electrical energy and/or data via near field magnetic coupling. The wireless connector system is designed to increase the amount of wirelessly transmitted electrical power over a greater separation distance. The system is configured with various sensing circuits that alert the system to the presence of the receiver module to begin transfer of electrical power as well as undesirable objects and increased temperature that could interfere with the operation of the system. The wireless connector system is a relatively small footprint that is designed to be surface mounted.
    Type: Application
    Filed: March 1, 2021
    Publication date: November 25, 2021
    Inventors: Vinit Singh, Pavel Shostak, Alberto Peralta, Jason Luzinski, Jacob D. Babcock, Michael Gotlieb, Glenn E. Riese, Md. Nazmul Alam, Robert Giometti, Oleg Los, Unnati Wadkar, Mark Melone
  • Patent number: 11101848
    Abstract: A wireless power transmission system includes, at least, a first transmission antenna and a second transmission antenna, both in electrical connection with a common power conditioning system of the system. The first transmission antenna transmits output power and includes a first pole and a second pole, while the second transmission antenna also transmits the output power and includes a third pole and a fourth pole. The first and second transmission antennas are in electrical connection with the power conditioning system via at least one of the first pole and the second pole and at least one of the third pole and the fourth pole. Further, at least one of the first pole and the second pole is in electrical connection with at least one of the third pole and the fourth pole.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 24, 2021
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Md. Nazmul Alam, Pavel Shostak
  • Publication number: 20210210985
    Abstract: The present application relates to an apparatus which comprises a wireless power transmission system. This system comprises features which allow it to transfer more power wirelessly to multiple devices simultaneously, each at extended distances than other systems operating in the same frequency range. The system including heat dissipation features, allowing the system to operate effectively in elevated-temperature environments and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also may include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system may include features to reduce electromagnetic interference (EMI) and/or specially shaped components with magnetic/ferrimagnetic properties that enhance performance.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Pavel Shostak, Jason Luzinski, Md. Nazmul Alam, Mark D. Melone, Matt Zamborsky, Alberto Peralta
  • Publication number: 20210210992
    Abstract: A wireless receiver system, configured to receive both electrical data signals and electrical energy, includes a first receiver antenna, configured to receive one or both of the electrical data signals and the electrical energy, and a power conditioning system in electrical connection with the first receiver antenna, configured to receive electrical energy from the first receiver antenna. The wireless receiver system further includes a second receiver antenna configured to receive the electrical data signals and a receiver controller operatively associated with the first receiver antenna and the second receiver antenna and configured to determine switching instructions. The wireless receiver system further includes a switch operatively associated with the receiver controller and configured to switch receiving operations between the first and second receiver antennas based, at least in part, on the switching instructions.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Jason Luzinski, Alberto Peralta, Pavel Shostak, Jacob Babcock
  • Publication number: 20210210984
    Abstract: A system for wireless power transfer includes a wireless transmission system, a wireless receiver system, and a dynamic tuning controller. The wireless transmission system configures an electrical energy signal, using the power from the input power source, for transmission by a transmission antenna. The wireless receiver system is operatively associated with a load and is configured to receive the electrical energy signal from the wireless transmission system, via coupling of the transmission antenna and receiver antenna, and configure the electrical energy signal to transfer power to the load. The dynamic tuning controller is configured to determine an output of the system and determine existence of disturbances to the system, based on the output, control alterations to one or more forward gain elements of one or more of the wireless transmission system, the wireless receiver system, and combinations thereof, if one or more disturbances exist, based on the output.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Alberto Peralta, Pavel Shostak, Jim Crnkovic
  • Publication number: 20210211161
    Abstract: A wireless power transmission system includes, at least, a first transmission antenna and a second transmission antenna, both in electrical connection with a common power conditioning system of the system. The first transmission antenna transmits output power and includes a first pole and a second pole, while the second transmission antenna also transmits the output power and includes a third pole and a fourth pole. The first and second transmission antennas are in electrical connection with the power conditioning system via at least one of the first pole and the second pole and at least one of the third pole and the fourth pole. Further, at least one of the first pole and the second pole is in electrical connection with at least one of the third pole and the fourth pole.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Alberto Peralta, Md. Nazmul Alam, Pavel Shostak
  • Patent number: 11056922
    Abstract: The present application relates to an apparatus which comprises a wireless power transmission system. This system comprises features which allow it to transfer more power wirelessly to multiple devices simultaneously, each at extended distances than other systems operating in the same frequency range. The system including heat dissipation features, allowing the system to operate effectively in elevated-temperature environments and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also may include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system may include features to reduce electromagnetic interference (EMI) and/or specially shaped components with magnetic/ferrimagnetic properties that enhance performance.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: July 6, 2021
    Assignee: NuCurrent, Inc.
    Inventors: Pavel Shostak, Jason Luzinski, Md. Nazmul Alam, Mark D. Melone, Matt Zamborsky, Alberto Peralta
  • Patent number: 11011915
    Abstract: Various embodiments of a wireless connector system are described. The system has a transmitter module and a receiver module that are configured to wirelessly transmit electrical energy and/or data via near field magnetic coupling. The wireless connector system is designed to increase the amount of wirelessly transmitted electrical power over a greater separation distance. The system is configured with various sensing circuits that alert the system to the presence of the receiver module to begin transfer of electrical power as well as undesirable objects and increased temperature that could interfere with the operation of the system. The wireless connector system is a relatively small foot print that is designed to be surface mounted.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 18, 2021
    Assignee: NuCurrent, Inc.
    Inventors: Vinit Singh, Pavel Shostak, Jason Luzinski, Glenn E Riese, Robert Giometti, Oleg Los