Patents by Inventor Pavel Ionov

Pavel Ionov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7399707
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Santiago Cox, Shamouil Shamouilian
  • Publication number: 20050124166
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Application
    Filed: January 13, 2005
    Publication date: June 9, 2005
    Applicants: Applied Materials, Inc., A Delaware corporation
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Cox, Shamouil Shamouilian
  • Publication number: 20050080955
    Abstract: A new very high dynamic range interface for connecting peripheral devices to a computer is disclosed. The interface comprises a normalized analog value signal and a range signal that could be analog or digital. The interface described by the present invention has improved dynamic range, accuracy, bandwidth and latency in comparison to the interfaces commonly used in the art.
    Type: Application
    Filed: September 23, 2004
    Publication date: April 14, 2005
    Applicant: Small Planet Photonics
    Inventors: Pavel Ionov, Monica Bar-Sever, Scott Jordan
  • Patent number: 6869880
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: March 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Santiago Cox, Shamouil Shamouilian
  • Publication number: 20030136332
    Abstract: A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
    Type: Application
    Filed: January 24, 2002
    Publication date: July 24, 2003
    Applicant: APPLIED MATERIALS INC., A Delaware corporation
    Inventors: Padmanabhan Krishnaraj, Pavel Ionov, Canfeng Lai, Michael Santiago Cox, Shamouil Shamouilian
  • Patent number: 6581612
    Abstract: A method of cleaning a semiconductor processing chamber uses as a cleaning gas precursor an iodine fluoride such as IF5 and IF7. Reactive species are generated from the precursor with help of plasma. These reactive species are further used to clean the processing chamber.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: June 24, 2003
    Assignee: Applied Materials Inc.
    Inventors: Peter Loewenhardt, Shamouil Shamouilian, Pavel Ionov, Pamanabhan Krishnaraj
  • Patent number: 6537918
    Abstract: A method for plasma etching a semiconductor film stack. The film stack includes at least one layer comprising silicon oxynitride. The method includes etching the silicon oxynitride-comprising layer using an etchant gas mixture comprising chlorine and at least one compound containing fluorine and carbon. The atomic ratio of fluorine to chlorine in the etchant gas ranges between about 3:1 and about 0.01:1; preferably, between about 0.5:1 and about 0.01:1; most preferably, between about 0.25:1 and about 0.1:1. The etchant gas forms a fluorine-comprising polymer or species which deposits on exposed surfaces adjacent to the silicon oxynitride-comprising layer in an amount sufficient to reduce the etch rate of an adjacent material (such as a photoresist) while permitting the etching of the silicon oxynitride-comprising layer.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: March 25, 2003
    Assignee: Applied Materials Inc.
    Inventors: Pavel Ionov, Sung Ho Kim, Dean Li, Chun Yan, James Chang Wang
  • Patent number: 6458516
    Abstract: A method of patterning a layer of dielectric material having a thickness greater than 1,000 Å, and typically a thickness greater than 5,000 Å. The method is particularly useful for forming a high aspect ratio via or a high aspect ratio contact including self-aligned contact structures, where the aspect ratio is typically greater than 3 and the feature size of the contact is about 0.25 &mgr;m or less. In particular, an organic, polymeric-based masking material is used in a plasma etch process for transferring a desired pattern through an underlying layer of dielectric material. The combination of masking material and plasma source gas must provide the necessary high selectivity toward etching of the underlying layer of dielectric material. The selectivity is preferably greater than 3:1, where the etch rate of the dielectric material is at least 3 times greater than the etch rate of the organic, polymeric-based masking material.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: October 1, 2002
    Assignee: Applied Materials Inc.
    Inventors: Yan Ye, Pavel Ionov, Allen Zhao, Peter Hsieh, Diana Ma, Chun Yan, Jie Yuan
  • Publication number: 20020016078
    Abstract: The present disclosure pertains to a method for plasma etching a semiconductor film stack. The film stack includes at least one layer comprising silicon oxynitride. The method includes etching the silicon oxynitride-comprising layer using an etchant gas mixture comprising chlorine and at least one compound containing fluorine and carbon. The atomic ratio of fluorine to chlorine in the etchant gas ranges between about 3:1 and about 0.01:1; preferably, between about 0.5:1 and about 0.01:1; most preferably, between about 0.25:1 and about 0.1:1. The etchant gas forms a fluorine-comprising polymer or species which deposits on exposed surfaces adjacent to the silicon oxynitride-comprising layer in an amount sufficient to reduce the etch rate of an adjacent material (such as a photoresist) while permitting the etching of the silicon oxynitride-comprising layer.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 7, 2002
    Inventors: Pavel Ionov, Sung Ho Kim, Dean Li, Chun Yan, James Chang Wang
  • Patent number: 6331380
    Abstract: A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: December 18, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Pavel Ionov, Allen Zhao, Peter Chang-Lin Hsieh, Diana Xiaobing Ma, Chun Yan, Jie Yuan
  • Patent number: 6291356
    Abstract: The present disclosure pertains to a method for plasma etching a semiconductor film stack. The film stack includes at least one layer comprising silicon oxynitride. The method includes etching the silicon oxynitride-comprising layer using an etchant gas mixture comprising chlorine and at least one compound containing fluorine and carbon. The atomic ratio of fluorine to chlorine in the etchant gas ranges between about 3:1 and about 0.01:1; preferably, between about 0.5:1 and about 0.01:1; most preferably, between about 0.25:1 and about 0.1:1. The etchant gas forms a fluorine-comprising polymer or species which deposits on exposed surfaces adjacent to the silicon oxynitride-comprising layer in an amount sufficient to reduce the etch rate of an adjacent material (such as a photoresist) while permitting the etching of the silicon oxynitride-comprising layer.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: September 18, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Pavel Ionov, Sung Ho Kim, Dean Li, Chun Yan, James Chang Wang
  • Patent number: 6080529
    Abstract: A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: June 27, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Pavel Ionov, Allen Zhao, Peter Chang-Lin Hsieh, Diana Xiaobing Ma, Chun Yan, Jie Yuan
  • Patent number: 6013582
    Abstract: The present disclosure pertains to a method for plasma etching a semiconductor patterning stack. The patterning stack includes at least one layer comprising either a dielectric-comprising antireflective material or an oxygen-comprising material. In many instances the dielectric-comprising antireflective material will be an oxygen-comprising material, but it need not be limited to such materials. In one preferred embodiment of the method, the chemistry enables the plasma etching of both a layer of the dielectric-comprising antireflective material or oxygen-comprising material and an adjacent or underlying layer of material. In another preferred embodiment of the method, the layer of dielectric-comprising antireflective material or oxygen-comprising material is etched using one chemistry, while the adjacent or underlying layer is etched using another chemistry, but in the same process chamber.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: January 11, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Pavel Ionov, Sung Ho Kim, Dean Li
  • Patent number: 6010966
    Abstract: A process for anisotropically etching a metal-containing layer 15 on a substrate 10 is described. The etching process uses an energized process gas of a comprising halogen-containing etchant gas for etching the metal-containing layer to form volatile metal compounds, and hydrocarbon inhibitor gas having a carbon-to-hydrogen ratio of from about 1:1 to about 1:3, to deposit inhibitor on etched metal features and provide anisotropic etching. More preferably, the hydrocarbon inhibitor gas comprises a high carbon-to-hydrogen ratio of from about 1:1 to 1:2.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: January 4, 2000
    Assignee: Applied Materials, Inc.
    Inventor: Pavel Ionov