Patents by Inventor Pavel Kortunov

Pavel Kortunov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140205525
    Abstract: Promoter amines are used to enhance CO2 uptake by sterically hindered or tertiary amines. The promoter amines can be cyclic amines, including aromatic cyclic amines or bridged cyclic amines. The combination of a promoter amine plus a sterically hindered or tertiary amines allows for improved uptake kinetics while reducing or minimizing the amount of formation of carbamate salts. The promoted sterically hindered or tertiary amines can be used as part of a CO2 capture and release system that involves a phase transition from a solution of amine-CO2 products to a slurry of amine-CO2 precipitate solids.
    Type: Application
    Filed: November 21, 2013
    Publication date: July 24, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Michael Siskin
  • Publication number: 20140178278
    Abstract: Systems and methods are provided for performing CO2 sorption and regeneration processes that can take advantage of phase changes between solutions of amine-CO2 reaction products and precipitate slurries, where the slurry particles can include solid precipitates formed based on the amine-CO2 reaction products. An amine solution can be used to capture CO2 from a gas phase stream. During this initial capture process, the amine-CO2 reaction product can remain in solution. The solution containing the amine-CO2 reaction product can then be exposed to a set of conditions which result in precipitation of a portion of the amine-CO2 reaction product to form a slurry. The precipitate slurry can be passed into one or more release stages where the conditions for the slurry are altered to allow for release of the CO2.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Patrick L. Hanks, Pavel Kortunov, Robert B. Fedich, Patrick P. McCall, Hans Thomann, Daniel Leta, Lisa S. Baugh, David C. Calabro, Harry W. Deckman
  • Patent number: 8715397
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture combination of an amine CO2 sorbent in combination with a non-nucleophilic, relatively stronger, typically nitrogenous, base. The weaker base(s) are nucleophilic and have the ability to react directly with the CO2 in the gas stream while the relatively stronger bases act as non-nucleophilic promoters for the reaction between the CO2 and the weaker base. The sorption and desorption temperatures can be varied by selection of the amine/base combination, permitting effective sorption temperatures of 70 to 90° C., favorable to scrubbing flue gas.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin, Preeti Kamakoti, Quanchang Li
  • Publication number: 20140030177
    Abstract: A high cyclic capacity carbon dioxide scrubbing process contacts a gas stream containing carbon dioxide in a sorption zone with a liquid scrubbing solution of a low molecular weight sterically hindered amine, particularly a secondary alkanolamine or aminoether at a high concentration, typically at least 3.5M and at a temperature of at least 30° C. to sorb the carbon dioxide into the solution and form a rich stream of the sorbed carbon dioxide in the solution in the form of dissolved amine carbamate and/or alkanolamine bicarbonate. The rich stream is then passed from the sorption zone to at least one regeneration zone and the sorbed carbon dioxide is desorbed as gas from the solution to form a lean solution containing a reduced concentration of sorbed carbon dioxide relative to the rich stream; the lean stream is then returned to the sorption zone for a further sorption cycle.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 30, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Michael Siskin, Hans Thomann
  • Publication number: 20130243677
    Abstract: A process for the selective separation of hydrogen sulfide from gas mixtures containing carbon dioxide as well as other acidic gases uses severely sterically hindered amino alcohol absorbents based on amino alcohols and ethers containing secondary nitrogen atoms hindered by an alpha tertiary carbon atom. Preferred absorbents include 2-(N-methylamino)-2-methylpropan-1-ol, (2-(N-ethylamino))-2-methylpropan-1-ol, (2-(N-isopropylamino)-2-methylpropan-1-ol, SBAE (2-(N-sec-butylamino)-2-methylpropan-1-ol) and (2-(N-t-butylamino)-2-methylpropan-1-ol.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Robert Basil FEDICH, Pavel Kortunov, Hans THOMANN
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142746
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142745
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20120063977
    Abstract: Ionic liquids containing a cation with a potentially nucleophilic carbon atom bearing a relatively acidic hydrogen atom bonded to a potentially nucleophilic carbon atom, typically in the conjugated —NC(H)N— structure or a —NC(H)S— structure of imidazolium, imidazolidinium or thiazolium salts, can be capable of acting as sorbents for CO2 in cyclic separation processes. The ionic liquid may be used on its own, mixed with a solvent, preferably an aprotic, polar, non-aqueous solvent such as toluene, DMSO, NMP or sulfolane, or in conjunction with a non-nucleophilic nitrogenous base promoter compound having a pKa of at least 10.0 such as a carboxamidine or a guanidine.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lisa S. Baugh, Pavel Kortunov, Michael Siskin
  • Publication number: 20120063980
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture consisting of an alkanolamine CO2 sorbent in combination with a non-nucleophilic base. The alkanolamine has oxygen and nitrogen sites capable of nucleophilic attack at the CO2 carbon atom. The nucleophilic addition is promoted in the presence of the non-nucleophilic, relatively stronger base, acting as a proton acceptor. The non-nucleophilic base promoter, which may also act as a solvent for the alkanolamine, can promote reaction with the CO2 at each of the reactive hydroxyl and nucleophilic amine group(s) of the alkanolamines. In the case of primary amino alkanolamines the CO2 may be taken up by a double carboxylation reaction in which two moles of CO2 are taken up by the reacting primary amine groups.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin
  • Publication number: 20120060686
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture combination of an amine CO2 sorbent in combination with a non-nucleophilic, relatively stronger, typically nitrogenous, base. The weaker base(s) are nucleophilic and have the ability to react directly with the CO2 in the gas stream while the relatively stronger bases act as non-nucleophilic promoters for the reaction between the CO2 and the weaker base. The sorption and desorption temperatures can be varied by selection of the amine/base combination, permitting effective sorption temperatures of 70 to 90° C., favorable to scrubbing flue gas.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin, Preeti Kamakoti, Quanchang Li
  • Publication number: 20120063979
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture combination of an amine containing a primary amino group CO2 sorbent in combination with a non-nucleophilic relatively stronger base. The weaker base(s) are nucleophilic and have the ability to react directly with the CO2 in the gas stream while the relatively stronger bases act as non-nucleophilic promoters for the reaction between the CO2 and the weaker base. Two moles of CO2 can be taken up by the primary amine groups in a dicarboxylation reaction, affording the potential for a highly efficient scrubbing process.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin
  • Publication number: 20120063978
    Abstract: Ionic liquids are capable of acting as solvents for amine CO2 absorbent compounds in CO2 separation processes and when so used enhance the sorption of the CO2 by the amine. A cyclic sorption process for separating CO2 from a gas stream, such as flue gas or natural gas, brings the gas stream into contact with an absorbent solution of an amine CO2 sorbent in an ionic liquid solvent followed by desorbing the CO2 to regenerate the amine.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Lisa S. Baugh, Pavel Kortunov, David C. Calabro, Michael Siskin
  • Publication number: 20120061614
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Lisa S. Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis G. Peiffer, Quanchang Li
  • Patent number: 8071063
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 6, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20090216059
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20090211441
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman, Jose G. Sentiesteben
  • Publication number: 20090214407
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Application
    Filed: January 23, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Publication number: 20090211440
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 27, 2009
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman