Patents by Inventor Pawan Kumar Agarwal

Pawan Kumar Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6977287
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with ?,?-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of ?,?-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations. Desirably, the melting point range of one of the crystalline populations is distinguishable from the melting point range of another crystalline population by a temperature range of from 1° C. to 8° C.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: December 20, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Chon-Yie Lin, Galen C. Richeson, Palanisamy Arjunan, Olivier Jean Georjon
  • Patent number: 6809168
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: October 26, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Olivier Jean Georjon, Chon-Yie Lin, Michael C. Chen, Galen C. Richeson, Palanisamy Arjunan
  • Publication number: 20040087750
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further indude at least two crystalline populations.
    Type: Application
    Filed: June 24, 2003
    Publication date: May 6, 2004
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Chon-Yie Lin, Galen C. Richeson, Palanisamy Arjunan, Olivier Jean Georjon
  • Publication number: 20040087749
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: April 2, 2003
    Publication date: May 6, 2004
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Armenag H. Dekmezian, Olivier Jean Georjon, Chon-Yie Lin, Michael C. Chen, Galen C. Richeson, Palanisamy Arjunan
  • Patent number: 6552108
    Abstract: The present invention relates generally to rubber compositions having improved green strength and thermal stability. These compositions comprise blends of a first rubber component, an isoolefin/para-alkylstyrene copolymer component, and an amine component reacted in situ prior to curing. The present invention further relates to methods for preparing these compositions.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: April 22, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Hsien Chang Wang, Ilan Duvdevani, Connie R. Qian, Pawan Kumar Agarwal
  • Patent number: 6545101
    Abstract: Polyisobutylene (PIB) functionalized with terminal reactive unsaturation is disclosed. Carbocationically polymerized monohalogen-terminated PIB is dehydrohalogenated in a hydrocarbon solvent using an alkoxide of the formula RO-M wherein R is alkyl of at least 5 carbon atoms and M is alkali metal. The PIB obtained has terminal unsaturation which is 100% in the reactive ‘exo’ form which can be converted to succinic anhydride groups (PIB-SA) by the ene reaction with maleic anhydride. The PIB-SA is reactive with amine functional dendrimers to obtain a star-branched polymer having a dendrimer core and PIB branches joined by succinimide linkages. Blends of the star-branched polymer with polypropylene have improved energy absorption properties and controllable moisture/oxygen permeabilities useful in films.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: April 8, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Hsien-Chang Wang, Yu Feng Wang, Jean M. J. Frechet, Shah A. Haque
  • Publication number: 20030050433
    Abstract: Polyisobutylene (PIB) functionalized with terminal reactive unsaturation is disclosed. Carbocationically polymerized monohalogen-terminated PIB is dehydrohalogenated in a hydrocarbon solvent using an alkoxide of the formula RO-M wherein R is alkyl of at least 5 carbon atoms and M is alkali metal. The PIB obtained has terminal unsaturation which is 100% in the reactive ‘exo’ form which can be converted to succinic anhydride groups (PIB-SA) by the ene reaction with maleic anhydride. The PIB-SA is reactive with amine functional dendrimers to obtain a star-branched polymer having a dendrimer core and PIB branches joined by succinimide linkages. Blends of the star-branched polymer with polypropylene have improved energy absorption properties and controllable moisture/oxygen permeabilities useful in films.
    Type: Application
    Filed: October 23, 2002
    Publication date: March 13, 2003
    Inventors: Pawan Kumar Agarwal, Hsien-Chang Wang, Yu Feng Wang, Jean M. J. Frechet, Shah A. Haque
  • Patent number: 6512019
    Abstract: This invention relates generally to foamable crystalline propylene polymers obtained from metallocene catalysis and to their methods of production. The foamed crystalline propylene polymers have molecular weight distributions and densities that fall within broad ranges. The crystalline propylene polymers may be prepared in a multiple stage polymerization process using a combination of metallocene components in at least two stages.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: January 28, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Aspy K. Mehta
  • Publication number: 20020013440
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: January 31, 2002
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Patent number: 6342565
    Abstract: Improved thermoplastic polymer soft elastic fiber blend compositions including a crystalline isotactic polypropylene component and a crystallizable alpha-olefin and propylene copolymer component, the copolymer comprising crystallizable alpha-olefin sequences. In a preferred embodiment, improved thermoplastic polymer blends are provided prepared from 0% to 95%, preferably 2% to 40% of the crystalline isotactic polypropylene and from 5% to 100%, preferably 60% to 98% of a crystallizable ethylene and propylene copolymer, wherein said copolymer comprises isotactically crystallizable propylene sequences and is predominately propylene. The resultant blends manifest unexpected compatibility characteristics, increased tensile strength, and, improved resistance to elastic deformation.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: January 29, 2002
    Assignee: ExxonMobil Chemical Patent Inc.
    Inventors: Chia Yung Cheng, Sudhin Datta, Pawan Kumar Agarwal
  • Publication number: 20010053837
    Abstract: The copolymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature (without the use of externally added nucleating agents) in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: December 20, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Publication number: 20010016639
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: December 11, 2000
    Publication date: August 23, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy Keki Mehta, Armenag Hagop Dekmezian, Christopher Ross Davey, Charlie Y. Lin, Michael Chia-Chao Chen, Galen Charles Richeson
  • Publication number: 20010007896
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;)-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: December 11, 2000
    Publication date: July 12, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy Keki Mehta, Armenag Hagop Dekmezian, Christopher Ross Davey, Charlie Y. Lin, Michael Chia-Chao Chen, Galen Charles Richeson, Rajan K. Chudgar, Main Chang
  • Publication number: 20010007897
    Abstract: Polyisobutylene (PIB) functionalized with terminal reactive unsaturation is disclosed. Carbocationically polymerized monohalogen-terminated PIB is dehydrohalogenated in a hydrocarbon solvent using an alkoxide of the formula RO-M wherein R is alkyl of at least 5 carbon atoms and M is alkali metal. The PIB obtained has terminal unsaturation which is 100% in the reactive ‘exo’ form which can be converted to succinic anhydride groups (PIB-SA) by the ene reaction with maleic anhydride. The PIB-SA is reactive with amine functional dendrimers to obtain a star-branched polymer having a dendrimer core and PIB branches joined by succinimide linkages. Blends of the star-branched polymer with polypropylene have improved energy absorption properties and controllable moisture/oxygen permeabilities useful in films.
    Type: Application
    Filed: February 6, 2001
    Publication date: July 12, 2001
    Inventors: Pawan Kumar Agarwal, Hsien-Chang Wang, Yu Feng Wang, Jean M.J. Frechet, Shah A. Haque
  • Patent number: 6228978
    Abstract: Polyisobutylene (PIB) functionalized with terminal reactive unsaturation is disclosed. Carbocationically polymerized monohalogen-terminated PIB is dehydrohalogenated in a hydrocarbon solvent using an alkoxide of the formula RO-M wherein R is alkyl of at least 5 carbon atoms and M is alkali metal. The PIB obtained has terminal unsaturation which is 100% in the reactive ‘exo’ form which can be converted to succinic anhydride groups (PIB-SA) by the ene reaction with maleic anhydride. The PIB-SA is reactive with amine functional dendrimers to obtain a star-branched polymer having a dendrimer core and PIB branches joined by succininide linkages. Blends of the star-branched polymer with polypropylene have improved energy absorption properties and controllable moisture/oxygen permeabilities useful in films.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: May 8, 2001
    Assignee: Exxon Mobil Chemical Patents Inc
    Inventors: Pawan Kumar Agarwal, Hsien-Chang Wang, Yu Feng Wang, Jean M. J. Frechet, Shah A. Haque
  • Patent number: 5795946
    Abstract: Film is provided wherein, at least one layer comprises polymer, a molecular majority of which is derived from propylene, having water vapor transmission rate of less than or equal to about (-7.4428 g.times..mu.m/m.sup.2 .times.day.times.% polymer crystallinity) (% polymer crystallinity)+627.32 g.times..mu.m/m.sup.2 .times.day, or (-0.0189 g.times.mil/100 in.sup.2 .times.day.times.% polymer crystallinity) (% polymer crystallity)+1.593 g.times.mil/100 in.sup.2 .times.day.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: August 18, 1998
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Pawan Kumar Agarwal, Aspy Keki Mehta, Wai Yan Chow, James John McAlpin