Patents by Inventor Paxton Maeder-York

Paxton Maeder-York has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240037743
    Abstract: Systems and methods for predicting viability of one or more embryos is described herein. In some variations, a method may include receiving a single image of the embryo via a real-time communication link with an image capturing device and generating a viability score for the embryo by classifying the single image via at least one convolutional neural network. In some variations, a method may include receiving a plurality of single images, where each single image depicts a different respective embryo of a plurality of embryos, generating a viability score for each embryo by classifying each single image via at least one convolutional neural network, and ranking the plurality of embryos based on the viability scores for the plurality of embryos.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 1, 2024
    Inventors: Kevin LOEWKE, Mark LOWN, Melissa TERAN, Paxton MAEDER-YORK
  • Publication number: 20240038351
    Abstract: Systems and methods for implementing machine-learning models for ovarian stimulation is described herein. In some variations, a computer-implemented method may include optimizing an ovarian stimulation process may include receiving patient-specific data associated with a patient, and predicting an egg outcome for the patient for each of a plurality of treatment options for an ovarian stimulation process based on at least one predictive model and the patient-specific data, where the at least one predictive model is trained using prior patient-specific data associated with a plurality of prior patients.
    Type: Application
    Filed: June 29, 2023
    Publication date: February 1, 2024
    Inventors: Kevin LOEWKE, Paxton MAEDER-YORK, Melissa TERAN, Mark LOWN, Arielle Sarah ROTHMAN, Veronica Isabella NUTTING, Michael FANTON, Jordan TANG
  • Patent number: 11735302
    Abstract: Systems and methods for implementing machine-learning models for ovarian stimulation is described herein. In some variations, a computer-implemented method may include optimizing an ovarian stimulation process may include receiving patient-specific data associated with a patient, and predicting an egg outcome for the patient for each of a plurality of treatment options for an ovarian stimulation process based on at least one predictive model and the patient-specific data, where the at least one predictive model is trained using prior patient-specific data associated with a plurality of prior patients.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: August 22, 2023
    Assignee: Alife Health Inc.
    Inventors: Kevin Loewke, Paxton Maeder-York, Melissa Teran, Mark Lown, Arielle Sarah Rothman, Veronica Isabella Nutting, Michael Fanton, Jordan Tang
  • Publication number: 20230116700
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system can include a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column can include column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base can include base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms can move independently from each other and include multiple arm segments. Each arm segment can provide an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 13, 2023
    Inventors: Alan YU, Frederic H. MOLL, Benjamin RICHTER, Mark H. OLSON, Jason GONZALEZ, Kyle Andrew TUCKER, Paxton MAEDER-YORK, Gregory T. SCHULTE
  • Publication number: 20220399091
    Abstract: Systems and methods for implementing machine-learning models for ovarian stimulation is described herein. In some variations, a computer-implemented method may include optimizing an ovarian stimulation process may include receiving patient-specific data associated with a patient, and predicting an egg outcome for the patient for each of a plurality of treatment options for an ovarian stimulation process based on at least one predictive model and the patient-specific data, where the at least one predictive model is trained using prior patient-specific data associated with a plurality of prior patients.
    Type: Application
    Filed: March 29, 2022
    Publication date: December 15, 2022
    Inventors: Kevin LOEWKE, Paxton MAEDER-YORK, Melissa TERAN, Mark LOWN, Arielle Sarah ROTHMAN, Veronica Isabella NUTTING, Michael FANTON, Jordan TANG
  • Patent number: 11464587
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: October 11, 2022
    Assignee: Auris Health, Inc.
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Publication number: 20210079935
    Abstract: A multi-segment reinforced actuator includes (a) a soft actuator body that defines a chamber and (b) a plurality of distinct reinforcement structures on or in respective segments of the soft actuator body. First and second reinforcement structures are respectively configured to produce a first and second actuation motions, respectively, in first and second segments of the soft actuator body when fluid flows into or out of the chamber. The actuation motions are selected bending, extending, expansion, contraction, twisting, and combinations thereof; and the first actuation motion differs from the second actuation motion. The actuator can be used, e.g., to facilitate bending of the thumb with corresponding bending, extending, expansion, contraction, and twisting actuation motions.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 18, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: Kevin Galloway, Conor Walsh, Donal Holland, Panagiotis Polygerinos, Tyler Clites, Paxton Maeder-York, Ryan Neff, Emily Marie Boggs, Zivthan Dubrovsky
  • Patent number: 10788058
    Abstract: A multi-segment reinforced actuator includes (a) a soft actuator body that defines a chamber and (b) a plurality of distinct reinforcement structures on or in respective segments of the soft actuator body. First and second reinforcement structures are respectively configured to produce a first and second actuation motions, respectively, in first and second segments of the soft actuator body when fluid flows into or out of the chamber. The actuation motions are selected bending, extending, expansion, contraction, twisting, and combinations thereof; and the first actuation motion differs from the second actuation motion. The actuator can be used, e.g., to facilitate bending of the thumb with corresponding bending, extending, expansion, contraction, and twisting actuation motions.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: September 29, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Kevin Galloway, Conor Walsh, Donal Holland, Panagiotis Polygerinos, Tyler Clites, Paxton Maeder-York, Ryan Neff, Emily Marie Boggs, Zivthan Dubrovsky
  • Publication number: 20200188043
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Patent number: 10500001
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: December 10, 2019
    Assignee: Auris Health, Inc.
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Publication number: 20190145435
    Abstract: A multi-segment reinforced actuator includes (a) a soft actuator body that defines a chamber and (b) a plurality of distinct reinforcement structures on or in respective segments of the soft actuator body. First and second reinforcement structures are respectively configured to produce a first and second actuation motions, respectively, in first and second segments of the soft actuator body when fluid flows into or out of the chamber. The actuation motions are selected bending, extending, expansion, contraction, twisting, and combinations thereof; and the first actuation motion differs from the second actuation motion. The actuator can be used, e.g., to facilitate bending of the thumb with corresponding bending, extending, expansion, contraction, and twisting actuation motions.
    Type: Application
    Filed: November 12, 2018
    Publication date: May 16, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Kevin Galloway, Conor Walsh, Donal Holland, Panagiotis Polygerinos, Tyler Clites, Paxton Maeder-York, Ryan Neff, Emily Marie Boggs, Zivthan Dubrovsky
  • Patent number: 10184500
    Abstract: A multi-segment reinforced actuator includes (a) a soft actuator body that defines a chamber and (b) a plurality of distinct reinforcement structures on or in respective segments of the soft actuator body. First and second reinforcement structures are respectively configured to produce a first and second actuation motions, respectively, in first and second segments of the soft actuator or body when fluid flows into or out of the chamber. The actuation motions are selected bending, extending, expansion, contraction, twisting, and combinations thereof; and the first actuation motion differs from the second actuation motion. The actuator can be used, e.g., to facilitate bending of the thumb with corresponding bending, extending, expansion, contraction, and twisting actuation motions.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: January 22, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Kevin Galloway, Conor Walsh, Donal Holland, Panagiotis Polygerinos, Tyler Clites, Paxton Maeder-York, Ryan Neff, Emily Marie Boggs, Zivthan Dubrovsky
  • Publication number: 20170172673
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Patent number: 9636184
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both, the robotic arms move independently from each other and include multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the system may position the robotic arms into numerous configurations to access different parts of a patient's body. The surgical bed may include a swivel segment that rotates laterally on the plane of the bed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 2, 2017
    Assignee: Auris Surgical Robotics, Inc.
    Inventors: Jason Lee, Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Patent number: 9622827
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 18, 2017
    Assignee: Auris Surgical Robotics, Inc.
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Publication number: 20160331613
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both, the robotic arms move independently from each other and include multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the system may position the robotic arms into numerous configurations to access different parts of a patient's body. The surgical bed may include a swivel segment that rotates laterally on the plane of the bed.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Inventors: Jason Lee, Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Publication number: 20160331477
    Abstract: A surgical robotics system with robotic arms is configurable to perform a variety of surgical procedures. The surgical robotics system includes a table, column, base, and robotic arms that are either column-mounted, rail-mounted, or mounted on a separate unit. In a column-mounted configuration, the column includes column rings that translate vertically and rotate about the column. The robotic arms are attached to the column rings. In a rail-mounted configuration, the base includes base rails that translate along the base. The robotic arms are attached to the base rails. In both configurations, the robotic arms move independently from each other and include a multiple arm segments. Each arm segment provides an additional degree of freedom to the robotic arm. Thus, the surgical robotics system may position the robotic arms into numerous configurations to access different parts of a patient's body.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Inventors: Alan Yu, Frederic H. Moll, Benjamin Richter, Mark H. Olson, Jason Gonzalez, Kyle Andrew Tucker, Paxton Maeder-York, Gregory T. Schulte
  • Publication number: 20160252110
    Abstract: A multi-segment reinforced actuator includes (a) a soft actuator body that defines a chamber and (b) a plurality of distinct reinforcement structures on or in respective segments of the soft actuator body. First and second reinforcement structures are respectively configured to produce a first and second actuation motions, respectively, in first and second segments of the soft actuator body when fluid flows into or out of the chamber. The actuation motions are selected bending, extending, expansion, contraction, twisting, and combinations thereof; and the first actuation motion differs from the second actuation motion. The actuator can be used, e.g., to facilitate bending of the thumb with corresponding bending, extending, expansion, contraction, and twisting actuation motions.
    Type: Application
    Filed: October 29, 2014
    Publication date: September 1, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: Kevin Galloway, Conor Walsh, Donal Holland, Panagiotis Polygerinos, Tyler Clites, Paxton Maeder-York, Ryan Neff, Emily Marie Boggs, Zivthan Dubrovsky