Patents by Inventor Payam Rabiei

Payam Rabiei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10663661
    Abstract: A novel apparatus for bonding of two polished substrates includes a plasma source in a ultra-high vacuum (UHV) chamber and a wafer-guiding element to control and guide wafers in the UHV chamber, where after a plasma activation process the wafers are guided and pressed against each other to form a covalent bond between wafer surfaces. The plasma activation process involves deposition of mono-layer or sub-monolayer metallic atom on the surface of substrates. After deposition of metallic layers, a high-force actuation presses the wafers and forms a covalent bond between the wafers. Then, the bonded wafer pair is ion-sliced or thinned to form single crystalline optical thin film. An annealing process oxidizes the deposited metallic layers and produces optically-transparent single crystalline thin film. An optical waveguide may be fabricated by this thin film while utilizing an electro-optic effect to produce optical modulators and other photonic devices.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: May 26, 2020
    Assignee: Partow Technologies, LLC.
    Inventors: Payam Rabiei, Jamie Nam, Amir Torkaman, Seyfollah Toroghi
  • Patent number: 10237004
    Abstract: A device includes circuitry configured to determine characteristics of jammer signals associated with a first wireless protocol of another device. An amount of interference between the jammer signals and a first received signal at the device associated with a second wireless protocol is determined, and the jammer signals are filtered from the second received signal when the amount of interference between the jammer signals and the first received signal is greater than a first predetermined threshold.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: March 19, 2019
    Assignee: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED
    Inventors: Vijay Sundararajan, Sriram Sundararajan, Payam Rabiei, Hrishikesh Atre, Yury Gonikberg, Neeraj Poojary, Suryakant Maharana, Avinash Renuka, Mohammad Karim, Jihui Chen
  • Publication number: 20170346578
    Abstract: A device includes circuitry configured to determine characteristics of jammer signals associated with a first wireless protocol of another device. An amount of interference between the jammer signals and a first received signal at the device associated with a second wireless protocol is determined, and the jammer signals are filtered from the second received signal when the amount of interference between the jammer signals and the first received signal is greater than a first predetermined threshold.
    Type: Application
    Filed: June 24, 2016
    Publication date: November 30, 2017
    Applicant: BROADCOM CORPORATION
    Inventors: Vijay SUNDARARAJAN, Sriram SUNDARARAJAN, Payam RABIEI, Hrishikesh ATRE, Yury GONIKBERG, Neeraj POOJARY, Suryakant MAHARANA, Avinash RENUKA, Mohammad KARIM, Jihui CHEN
  • Patent number: 9746743
    Abstract: A novel electro-optic optical modulator device and a related method for creating the novel optical modulator device are disclosed. In one embodiment, the novel optical modulator comprises a high index contrast optical waveguide, a mesa region, electrical modulation electrodes, RF transmission lines, and interconnection layers. The high index contrast optical waveguide comprises an electro-optic slab core region and a high index ridge core region. A mesa section which includes the core regions can be formed, and electrical modulation electrodes are placed on etched sidewalls of the mesa section to achieve electro-optical index modulation of the electro-optic slab core region. The RF transmission lines include RF electrodes that connected to the electrical modulation electrodes. The interconnection layers connect the modulation electrodes with the RF electrodes by using etched vias. The novel optical modulator can also incorporate foldable modulation arms for poling in the electro-optic slab core region.
    Type: Grant
    Filed: July 30, 2016
    Date of Patent: August 29, 2017
    Assignee: Partow Technologies, LLC.
    Inventor: Payam Rabiei
  • Patent number: 9746608
    Abstract: A novel optical assembly apparatus for coupling optical energy and a related method for creating the novel optical assembly apparatus are disclosed. In one embodiment, the novel optical assembly apparatus includes a high-index contrast waveguide constructed on a semiconductor die or another base substrate with an aligned optical coupling section, a grating coupler etched onto a surface, a micro mirror with an acute angle relative to the surface, and a waveguide taper that narrows an optical beam width. A light ray entered into the optical coupling section is redirected by the micro mirror to form a perpendicular ray entry angle with the grating coupler. The grating coupler then efficiently couples the light ray with the waveguide taper, which in turn narrows the optical beam width. The light ray may originate from a semiconductor die or from an optical fiber, which is purposefully aligned with the high-index contrast waveguide.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 29, 2017
    Assignee: Partow Technologies, LLC.
    Inventor: Payam Rabiei
  • Patent number: 9229158
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a novel waveguide is produced by first depositing or growing a first low refractive index material layer as a cladding layer on top of a base substrate. Then, a first high refractive index material layer is deposited or transferred to the top of the cladding layer to form a slab core region. Subsequently, a second high refractive index material layer is deposited on top of the slab core region, and an etch mask layer is formed. Furthermore, the second high refractive index material layer is selectively etched by utilizing a dry-etching tool with high selectivity to the etch mask layer, and a second low refractive index material layer is deposited as a top cladding layer to encapsulate the second high refractive index material layer on top of lower cladding layers.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: January 5, 2016
    Inventor: Payam Rabiei
  • Publication number: 20150323737
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a novel waveguide is produced by first depositing or growing a first low refractive index material layer as a cladding layer on top of a base substrate. Then, a first high refractive index material layer is deposited or transferred to the top of the cladding layer to form a slab core region. Subsequently, a second high refractive index material layer is deposited on top of the slab core region, and an etch mask layer is formed. Furthermore, the second high refractive index material layer is selectively etched by utilizing a dry-etching tool with high selectivity to the etch mask layer, and a second low refractive index material layer is deposited as a top cladding layer to encapsulate the second high refractive index material layer on top of lower cladding layers.
    Type: Application
    Filed: April 9, 2015
    Publication date: November 12, 2015
    Inventor: Payam Rabiei
  • Patent number: 9111730
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a “channel” waveguide is produced by first depositing a lower cladding material layer with a low refractive index on a base substrate and a refractory metal layer. Then, an etch mask layer is deposited on the refractory layer, followed by selective etching of the refractory metal layer with a dry-etch tool with high selectivity to the etch mask layer. Then, the refractory metal layer is oxidized to form an oxidized refractory metal region, and a top cladding layer made of a second low refractive index material to encapsulate the oxidized refractory metal region. In another embodiment, a “ridge” waveguide is produced by using similar process steps with an added step of depositing a high-refractive-index material layer and an optional optically-transparent layer.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: August 18, 2015
    Inventor: Payam Rabiei
  • Publication number: 20150001175
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a “channel” waveguide is produced by first depositing a lower cladding material layer with a low refractive index on a base substrate and a refractory metal layer. Then, an etch mask layer is deposited on the refractory layer, followed by selective etching of the refractory metal layer with a dry-etch tool with high selectivity to the etch mask layer. Then, the refractory metal layer is oxidized to form an oxidized refractory metal region, and a top cladding layer made of a second low refractive index material to encapsulate the oxidized refractory metal region. In another embodiment, a “ridge” waveguide is produced by using similar process steps with an added step of depositing a high-refractive-index material layer and an optional optically-transparent layer.
    Type: Application
    Filed: May 8, 2014
    Publication date: January 1, 2015
    Inventor: Payam Rabiei
  • Patent number: 8900899
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a “channel” waveguide is produced by first depositing a lower cladding material layer with a low refractive index on a base substrate, a refractory metal layer, and a top diffusion barrier layer. Then, a trench is formed with an open surface to the refractory metal layer. The open surface is subsequently oxidized to form an oxidized refractory metal region, and the top diffusion barrier layer and the non-oxidized refractory metal region are removed. Then, a low-refractive-index top cladding layer is deposited on this waveguide structure to encapsulate the oxidized refractory metal region. In another embodiment, a “ridge” waveguide is produced by using similar process steps with an added step of depositing a high-refractive-index material layer and an optional optically-transparent layer.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 2, 2014
    Inventor: Payam Rabiei
  • Publication number: 20140004638
    Abstract: Novel processing methods for production of high-refractive index contrast and low loss optical waveguides are disclosed. In one embodiment, a “channel” waveguide is produced by first depositing a lower cladding material layer with a low refractive index on a base substrate, a refractory metal layer, and a top diffusion barrier layer. Then, a trench is formed with an open surface to the refractory metal layer. The open surface is subsequently oxidized to form an oxidized refractory metal region, and the top diffusion barrier layer and the non-oxidized refractory metal region are removed. Then, a low-refractive-index top cladding layer is deposited on this waveguide structure to encapsulate the oxidized refractory metal region. In another embodiment, a “ridge” waveguide is produced by using similar process steps with an added step of depositing a high-refractive-index material layer and an optional optically-transparent layer.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventor: Payam Rabiei
  • Publication number: 20080165565
    Abstract: A method of producing a device with a ferroelectric crystal thin film on a first substrate including the steps of providing a ferroelectric crystal, of irradiating a first surface of the ferroelectric crystal with ions so that a damaged layer is created underneath the first surface, of bonding a block of material including the first substrate to the ferroelectric crystal to create a bonded element, wherein an interface is formed between the first surface and a second surface of the block, and of heating the bonded element and separating it at the damaged layer, so that a ferroelectric crystal layer remains supported by the first substrate. By this method, very thin films—down to thicknesses of a fraction of a micrometer—of ferroelectric crystals may be fabricated without jeopardizing the monocrystalline structure.
    Type: Application
    Filed: June 17, 2004
    Publication date: July 10, 2008
    Applicant: EIDGENOSSISCHE TECHNISCHE HOCHSCHULE ZURICH
    Inventors: Peter Gunter, Payam Rabiei