Patents by Inventor Payam Tayebati

Payam Tayebati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180181007
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Application
    Filed: November 1, 2017
    Publication date: June 28, 2018
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Patent number: 9810996
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: November 7, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Publication number: 20150109591
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Application
    Filed: November 3, 2014
    Publication date: April 23, 2015
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Patent number: 8902401
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: December 2, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Patent number: 8891172
    Abstract: The disclosure relates to an optical element configure to at least partial spatially resolve correction of a wavefront aberration of an optical system (e.g., a projection exposure apparatus for microlithography) to which optical radiation can be applied, as well as related systems and methods.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: November 18, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eric Eva, Payam Tayebati, Michael Thier, Markus Hauf, Ulrich Schoenhoff, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner
  • Patent number: 8508854
    Abstract: The disclosure relates to an optical element configure to at least partial spatially resolve correction of a wavefront aberration of an optical system (e.g., a projection exposure apparatus for microlithography) to which optical radiation can be applied, as well as related systems and methods.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 13, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eric Eva, Payam Tayebati, Michael Thier, Markus Hauf, Ulrich Schoenhoff, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner
  • Patent number: 8363206
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 29, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Patent number: 8325322
    Abstract: The disclosure relates to an optical correction device with thermal actuators for influencing the temperature distribution in the optical correction device. The optical correction device is constructed from at least two partial elements which differ with regard to their ability to transport heat. Furthermore, the disclosure relates to methods for influencing the temperature distribution in an optical element.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: December 4, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Hauf, Ulrich Schoenhoff, Payam Tayebati, Michael Thier, Tilmann Heil, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner, Aksel Goehnermeier, Dirk Hellweg
  • Patent number: 7990622
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a manipulator for reducing rotationally asymmetric image errors. The manipulator in turn contains a lens, an optical element and an interspace formed between the lens and the optical element, which can be filled with a liquid. At least one actuator acting exclusively on the lens is furthermore provided, which can generate a rotationally asymmetric deformation of the lens.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 2, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Olaf Conradi, Boris Bittner, Sascha Bleidistel, Markus Hauf, Wolfgang Hummel, Arif Kazi, Baerbel Schwaer, Jochen Weber, Hubert Holderer, Payam Tayebati
  • Publication number: 20110080569
    Abstract: The disclosure relates to an optical element configure to at least partial spatially resolve correction of a wavefront aberration of an optical system (e.g., a projection exposure apparatus for microlithography) to which optical radiation can be applied, as well as related systems and methods.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Eric Eva, Payam Tayebati, Michael Thier, Markus Hauf, Ulrich Schoenhoff, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner
  • Publication number: 20110019169
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a manipulator for reducing rotationally asymmetric image errors. The manipulator in turn contains a lens, an optical element and an interspace formed between the lens and the optical element, which can be filled with a liquid. At least one actuator acting exclusively on the lens is furthermore provided, which can generate a rotationally asymmetric deformation of the lens.
    Type: Application
    Filed: October 1, 2010
    Publication date: January 27, 2011
    Applicant: CARL ZEISS SMT AG
    Inventors: Olaf Conradi, Boris Bittner, Sascha Bleidistel, Markus Hauf, Wolfgang Hummel, Arif Kazi, Baerbel Schwaer, Jochen Weber, Hubert Holderer, Payam Tayebati
  • Patent number: 7830611
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a manipulator for reducing rotationally asymmetric image errors. The manipulator in turn contains a lens, an optical element and an interspace formed between the lens and the optical element, which can be filled with a liquid. At least one actuator acting exclusively on the lens is furthermore provided, which can generate a rotationally asymmetric deformation of the lens.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 9, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Olaf Conradi, Sascha Bleidistel, Markus Hauf, Wolfgang Hummel, Arif Kazi, Baerbel Schwaer, Jochen Weber, Hubert Holderer, Payam Tayebati, Boris Bittner
  • Publication number: 20100201958
    Abstract: The disclosure relates to an optical correction device with thermal actuators for influencing the temperature distribution in the optical correction device. The optical correction device is constructed from at least two partial elements which differ with regard to their ability to transport heat. Furthermore, the disclosure relates to methods for influencing the temperature distribution in an optical element.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 12, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Markus Hauf, Ulrich Schoenhoff, Payam Tayebati, Michael Thier, Tilmann Heil, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner, Aksel Goehnermeier, Dirk Hellweg
  • Publication number: 20090257032
    Abstract: The disclosure relates to an optical element configure to at least partial spatially resolve correction of a wavefront aberration of an optical system (e.g., a projection exposure apparatus for microlithography) to which optical radiation can be applied, as well as related systems and methods.
    Type: Application
    Filed: March 11, 2009
    Publication date: October 15, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Eric Eva, Payam Tayebati, Michael Thier, Markus Hauf, Ulrich Schoenhoff, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner
  • Publication number: 20090135385
    Abstract: An optical imaging device, in particular for use in microlithography, includes a mask device for receiving a mask having a projection pattern, a projection device with an optical element group, a substrate device for receiving a substrate and an immersion zone. The optical element group is adapted to project the projection pattern onto the substrate and includes a plurality of optical elements with an immersion element to which the substrate is at least temporarily located adjacent to during operation. During operation, the immersion zone is located between the immersion element and the substrate and is at least temporarily filled with an immersion medium. A thermal attenuation device is provided, the thermal attenuation device being adapted to reduce fluctuations within the temperature distribution of the immersion element induced by the immersion medium.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 28, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Bernhard Gellrich, Jens Kugler, Thomas Ittner, Stefan Hembacher, Karl-Heinz Schimitzek, Payam Tayebati, Hubert Holderer
  • Publication number: 20080239503
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a manipulator for reducing rotationally asymmetric image errors. The manipulator in turn contains a lens, an optical element and an interspace formed between the lens and the optical element, which can be filled with a liquid. At least one actuator acting exclusively on the lens is furthermore provided, which can generate a rotationally asymmetric deformation of the lens.
    Type: Application
    Filed: January 9, 2008
    Publication date: October 2, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Olaf Conradi, Sascha Bleidistel, Markus Hauf, Wolfgang Hummel, Arif Kazi, Baerbel Schwaer, Jochen Weber, Hubert Holderer, Payam Tayebati, Boris Bittner