Patents by Inventor Pazhayannur Subramanian

Pazhayannur Subramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371120
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: March 10, 2019
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Publication number: 20190203323
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: March 10, 2019
    Publication date: July 4, 2019
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 10227678
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 12, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 9034247
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 19, 2015
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Publication number: 20120312434
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Publication number: 20120312426
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4% of Al, about 10 to about 20% of W, about 10 to about 40% Ni, about 5 to 20% Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Publication number: 20070151639
    Abstract: A superalloy-containing structural component includes a superalloy matrix, and a plurality of hard phase nanoparticles dispersed at grain boundaries within the superalloy matrix, wherein the plurality of hard phase nanoparticles dispersed at the grain boundaries comprise about 1 volume percent to about 30 volume percent of the structural component, and wherein the superalloy matrix and the plurality of hard phase nanoparticles dispersed at the grain boundaries within the base superalloy matrix have been thermo-mechanically processed to form the structural component.
    Type: Application
    Filed: January 3, 2006
    Publication date: July 5, 2007
    Inventors: Ramkumar Oruganti, Pazhayannur Subramanian, Michael Gigliotti, Luana Iorio, Craig Young, Suchismita Sanyal, Dheepa Srinivasan, Sundar Amancherla
  • Publication number: 20070151630
    Abstract: A method of making a soft magnetic material with ultra-fine grain structure is provided. The method includes the steps of: providing a soft magnetic starting material; and deforming the soft magnetic starting material within a dynamic recrystallization processing zone to form a billet having a grain size less than about 200 nm. An article comprising a magnetic material is provided, wherein the article is formed by: providing a soft magnetic starting material; and deforming the soft magnetic starting material within a dynamic recrystallization processing zone to form a billet having a grain size less than about 200 nm.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Applicant: General Electric Company
    Inventors: Luana Iorio, Pazhayannur Subramanian
  • Publication number: 20070098977
    Abstract: An article including a monolithic body including iron, cobalt, and nitrogen is provided. The monolithic body includes a matrix phase and a plurality of particles disposed within the matrix phase. The particles include a phase comprising nitrogen.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 3, 2007
    Applicant: General Electric Company
    Inventors: Luana Iorio, Pazhayannur Subramanian, Michael Gigliotti
  • Patent number: 7189459
    Abstract: One exemplary embodiment of a turbine component (which may be a blade) comprises a substrate comprising a silicide-based material, a plurality of through holes disposed in the substrate, the holes being configured to receive an airflow, a silicide coating disposed at the surfaces of the substrate and the through holes, and a thermal barrier coating disposed at the silicide coating. In another exemplary embodiment the silicide coating may be replaced by a Laves phase-containing layer. In still another exemplary embodiment the silicide coating may be replaced by a diffusion barrier layer disposed at a surface of the substrate and a platinum group metal layer disposed at the diffusion barrier layer. One exemplary embodiment of a blade may comprise an airfoil comprising a silicide-based material and through holes disposed therein, a cooling plenum disposed in the airfoil, and a base configured to receive the airfoil in a dovetail fit, the base comprising a superalloy.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: March 13, 2007
    Assignee: General Electric Company
    Inventors: Melvin Jackson, Pazhayannur Subramanian, Ji-Cheng Zhao, Bernard Bewlay, Ramgopal Darolia, Robert Schafrik
  • Publication number: 20070023109
    Abstract: A refractory composition is described, containing niobium, silicon, titanium, and at least one of rhenium and ruthenium. The amount of silicon in the composition is at least about 9 atom %, and the amount of titanium present is less than about 26 atom %, based on total atomic percent. Turbine engine components formed from such a composition are also disclosed.
    Type: Application
    Filed: July 26, 2005
    Publication date: February 1, 2007
    Inventors: Bernard Bewlay, Laurent Cretegny, Pazhayannur Subramanian, Melvin Jackson
  • Publication number: 20060249556
    Abstract: An apparatus for friction stir welding, a weld tool for friction stir welding, and a method for making a weld tool for friction stir welding are presented. The weld tool comprises doped tungsten. A method for manufacturing an article, where the method comprises providing the apparatus for friction stir welding, and the article produced by this method are also presented.
    Type: Application
    Filed: April 24, 2006
    Publication date: November 9, 2006
    Inventors: Pazhayannur Subramanian, Bernard Bewlay, Earl Helder, Timothy Trapp, Timothy Hanlon
  • Publication number: 20060163328
    Abstract: The present invention provides a friction stir welding apparatus operable for welding one or more metals, metal alloys, or other materials. The friction stir welding apparatus includes a pin tool holder, a shoulder having a surface coupled to the pin tool holder, and a pin tool coupled to the pin tool holder, the pin tool at least partially protruding from the surface of the shoulder, wherein the pin tool is made of a consumable pin tool material. Optionally, the shoulder rotates at a predetermined rotational speed and is retractable into/extendable from the pin tool holder at a substantially constant rate. Optionally, the shoulder is also made of a consumable shoulder material that is at least partially incorporated into the volume of a joint to be welded. The consumable shoulder material comprises a material that is the same as, similar to, or dissimilar from one or more materials comprising a workpiece to be friction stir welded.
    Type: Application
    Filed: March 23, 2006
    Publication date: July 27, 2006
    Applicant: General Electric Company
    Inventors: Pazhayannur Subramanian, Earl Helder, Timothy Trapp
  • Publication number: 20060147335
    Abstract: A refractory composition comprising niobium and silicon is disclosed. The amount of silicon present is less than about 9 atom %, based on total atomic percent for the composition. A turbine engine component (e.g., a gas turbine) is also described herein. The component comprises an alloy of niobium and silicon, wherein the amount of silicon present is less than about 9 atom %.
    Type: Application
    Filed: December 31, 2004
    Publication date: July 6, 2006
    Inventors: Bernard Bewlay, Laurent Cretegny, Melvin Jackson, Pazhayannur Subramanian
  • Publication number: 20060141139
    Abstract: An article comprising a multilayered structure comprising a series of magnetic layers is provided. The magnetic layers comprise a magnetic material, and an insulating layer is disposed between successive magnetic layers. Each magnetic layer has a thickness of at least about 2 micrometers and magnetic material has an average grain size less than 200 nm. Also provided is a method for making the article.
    Type: Application
    Filed: December 28, 2004
    Publication date: June 29, 2006
    Inventors: Luana Iorio, Pazhayannur Subramanian
  • Publication number: 20060117562
    Abstract: A process for repairing a turbine component comprises overlaying a preform of a brazing material onto a surface of the turbine component, wherein the surface comprises a damaged portion; securing the preform of a brazing material to the surface; and heating the turbine component to a temperature effective to form a brazed joint between the brazing material and the turbine component. Also disclosed is a repaired turbine component repaired by the process.
    Type: Application
    Filed: June 13, 2003
    Publication date: June 8, 2006
    Inventors: Pazhayannur Subramanian, James Ruud, Laurent Cretegny
  • Publication number: 20050133121
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a metallic alloy matrix, and a structural component formed from such a nanocomposite. The metallic matrix comprises at least one of a nickel-based alloy and an iron-based alloy. The nanocomposite contains a higher volume fraction of nanoparticle dispersoids than those presently available. The structural component include those used in hot gas path assemblies, such as steam turbines, gas turbines, and aircraft turbine. A method of making such nanocomposites is also disclosed.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Pazhayannur Subramanian, Thomas Angeliu, Reed Corderman, Shyh-Chin Huang, Judson Marte, Dennis Gray, Krishnamurthy Anand, Dheepa Srinivasan, Ramkumar Oruganti, Sundar Amancherla
  • Publication number: 20050135959
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a molybdenum-based matrix, and an x-ray tube component formed from such a nanocomposite. The nanocomposite contains volume fraction of nanoparticle dispersoids in a range from about 2 volume percent to about 20 volume percent. A method of making such molybdenum-based nanocomposites is also disclosed.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Pazhayannur Subramanian, Judson Marte, Paul Dupree
  • Publication number: 20050079370
    Abstract: Nano-multilayered structures, components and associated methods of manufacture suitable for use in high-temperature applications including a plurality of metallic alloy layers, wherein the thickness of each of the plurality of metallic alloy layers is on a nano scale, and a plurality of ceramic oxide layers disposed between the plurality of metallic alloy layers in an alternating manner, wherein the thickness of each of the plurality of ceramic oxide layers is on a nano scale.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 14, 2005
    Inventors: Reed Corderman, Pazhayannur Subramanian, Dheepa Srinivasan, Dennis Gray, Krishnamurthy Anand
  • Publication number: 20050069449
    Abstract: The present invention provides a method for forming a refractory metal-intermetallic composite. The method includes providing a first powder comprising a refractory metal suitable for forming a metal phase; providing a second powder comprising a silicide precursor suitable for forming an intermetallic phase; blending the first powder and the second powder to form a powder blend; consolidating and mechanically deforming the powder blend at a first temperature; and reacting the powder blend at a second temperature to form the metal phase and the intermetallic phase of the refractory metal-intermetallic composite, wherein the second temperature is higher than the first temperature.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 31, 2005
    Inventors: Melvin Jackson, Bernard Bewlay, Judson Marte, Pazhayannur Subramanian, Ji-Cheng Zhao, Ann Ritter