Patents by Inventor Pedro A. de Buen

Pedro A. de Buen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10755190
    Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 25, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexandr M. Tcaciuc, Pedro A. de Buen, Peter D. Spear, Sergey V. Uchaykin, Colin C. Enderud, Richard D. Neufeld, Jeremy P. Hilton, J. Craig Petroff, Amar B. Kamdar, Gregory D. Peregrym, Edmond Ho Yin Kan, Loren J. Swenson, George E. G. Sterling, Gregory Citver
  • Publication number: 20200092985
    Abstract: A multilayer filter printed circuit board includes filtering material in one or more filter layers. The filtering material can include superconducting material, normal material, magnetic material and semi-conductor material. The multilayer filter printed circuit board may be used as part of a tubular filter structure. The filtering material may be dispersed in, or on the filter layers in a pattern or at random. The filter layers may have a first and second portion that are co-planar, and comprising different filtering materials from one another. The first and second portion may be electrically isolated from one another. Two or more filter layers may comprise different filtering materials from one another. Additional filter layers comprising filtering material may be formed outward of the outer electrically insulative layers.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 19, 2020
    Inventors: David S. Bruce, Pedro A. de Buen
  • Publication number: 20170178018
    Abstract: An electrical filter includes a dielectric substrate with inner and outer coils about a first region and inner and outer coils about a second region, a portion of cladding removed from wires that form the coils and coupled to electrically conductive traces on the dielectric substrate via a solder joint in a switching region. An apparatus to thermally couple a superconductive device to a metal carrier with a through-hole includes a first clamp and a vacuum pump. A composite magnetic shield for use at superconductive temperatures includes an inner layer with magnetic permeability of at least 50,000; and an outer layer with magnetic saturation field greater than 1.2 T, separated from the inner layer by an intermediate layer of dielectric. An apparatus to dissipate heat from a superconducting processor includes a metal carrier with a recess, a post that extends upwards from a base of the recess and a layer of adhesive on top of the post. Various cryogenic refrigeration systems are described.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Alexandr M. Tcaciuc, Pedro A. de Buen, Peter D. Spear, Sergey V. Uchaykin, Colin C. Enderud, Richard D. Neufeld, Jeremy P. Hilton, J. Craig Petroff, Amar B. Kamdar, Gregory D. Peregrym, Edmond Ho Yin Kan, Loren J. Swenson, George E.G. Sterling, Gregory Citver