Patent number: 11299444
Abstract: Processes are provided for the removal of hydrogen from a mixture. The process can be performed by contacting a mixture comprising hydrogen, oxygen, and one or more organic compounds with a synthetic zeolite to produce water or steam. The synthetic zeolite can include Si and Al and has a SiO2:Al2O3 molar ratio of greater than 4:1, an 8-membered ring zeolite having a framework type of AEI, AFT, AFX, CHA, CDO, DDR, EDI, ERI, IHW, ITE, ITW, KFI, MER, MTF, MWF, LEV, LTA, PAU, PWN, RHO, SFW or UFI, a degree of crystallinity of at least 80% as measured by ASTM D535-197, and at least 0.01 wt % of at least one catalytic metal, based on a weight of the synthetic zeolite, where the at least one catalytic metal can include Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mo, W, Re, Co, Ni, Zn, Cr, Mn, Ce, Ga, alloys thereof, or mixtures thereof. At least 95% of the catalytic metal can be disposed within a plurality of pores of the synthetic zeolite.
Type:
Grant
Filed:
October 30, 2020
Date of Patent:
April 12, 2022
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
Aaron Sattler, Michele L. Paccagnini, Pedro M. Serna Merino, Henry K. Klutse
Publication number: 20210155565
Abstract: Processes are provided for the removal of hydrogen from a mixture. The process can be performed by contacting a mixture comprising hydrogen, oxygen, and one or more organic compounds with a synthetic zeolite to produce water or steam. The synthetic zeolite can include Si and Al and has a SiO2:Al2O3 molar ratio of greater than 4:1, an 8-membered ring zeolite having a framework type of AEI, AFT, AFX, CHA, CDO, DDR, EDI, ERI, IHW, ITE, ITW, KFI, MER, MTF, MWF, LEV, LTA, PAU, PWN, RHO, SFW or UFI, a degree of crystallinity of at least 80% as measured by ASTM D535-197, and at least 0.01 wt % of at least one catalytic metal, based on a weight of the synthetic zeolite, where the at least one catalytic metal can include Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mo, W, Re, Co, Ni, Zn, Cr, Mn, Ce, Ga, alloys thereof, or mixtures thereof. At least 95% of the catalytic metal can be disposed within a plurality of pores of the synthetic zeolite.
Type:
Application
Filed:
October 30, 2020
Publication date:
May 27, 2021
Inventors:
Aaron Sattler, Michele L. Paccagnini, Pedro M. Serna Merino, Henry K. Klutse