Patents by Inventor Pedro M. SERNA MERINO

Pedro M. SERNA MERINO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12145136
    Abstract: A catalyst may include a metallic function derived from a metal constrained within cages and/or channels of a microporous material, wherein the cages and/or channels of the microporous material are defined by 8 tetrahedral atoms or fewer; and an acidic function derived from an additional zeolite having cages and/or channels defined by 10 or more tetrahedral atoms, wherein the microporous material providing the metallic function and additional zeolite providing the acidic function are coupled by a binder.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: November 19, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Micaela Taborga Claure, Doron Levin, Joseph E. Gatt, Scott Weigel, Pedro M. Serna Merino
  • Patent number: 12048919
    Abstract: Catalytic compositions and sequential catalytic methods are generally described. In some embodiments, a composition comprises a first catalyst comprising a Cu-modified zeolite, and a second catalyst capable of a coupling reaction between (a) an intermediate resulting from a reaction of a reactant at the first catalyst, and (b) a co-reagent, wherein a rate of diffusion of the co-reagent within one or more cages and/or pores of the first catalyst is lower than a rate of diffusion of the intermediate within the one or more cages and/or pores of the first catalyst.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: July 30, 2024
    Assignees: Massachusetts Institute of Technology, ExxonMobil Research and Engineering Company
    Inventors: Yuriy Román-Leshkov, Randall J. Meyer, Pedro M. Serna Merino, Mark Sullivan, Kimberly Dinh
  • Publication number: 20230135668
    Abstract: A catalyst may include a metallic function derived from a metal constrained within cages and/or channels of a microporous material, wherein the cages and/or channels of the microporous material are defined by 8 tetrahedral atoms or fewer; and an acidic function derived from an additional zeolite having cages and/or channels defined by 10 or more tetrahedral atoms, wherein the microporous material providing the metallic function and additional zeolite providing the acidic function are coupled by a binder.
    Type: Application
    Filed: February 19, 2021
    Publication date: May 4, 2023
    Inventors: Micaela Taborga Claure, Doron Levin, Joseph E. Gatt, Scott Weigel, Pedro M. Serna Merino
  • Publication number: 20220314207
    Abstract: Catalytic compositions and sequential catalytic methods are generally described. in some embodiments, a composition comprises a first catalyst comprising a Cu-modified zeolite, and a second catalyst capable of a coupling reaction between (a) an intermediate resulting from a reaction of a reactant at the first catalyst, and (b) a co-reagent, wherein a rate of diffusion of the co-reagent within one or more cages and/or pores of the first catalyst is lower than a rate of diffusion of the intermediate within the one or more cages and/or pores of the first catalyst.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicants: Massachusetts Institute of Technology, ExxonMobil Research and Engineering Company
    Inventors: Yuriy Román-Leshkov, Randall J. Meyer, Pedro M. Serna Merino, Mark Sullivan, Kimberly Dinh
  • Patent number: 11299444
    Abstract: Processes are provided for the removal of hydrogen from a mixture. The process can be performed by contacting a mixture comprising hydrogen, oxygen, and one or more organic compounds with a synthetic zeolite to produce water or steam. The synthetic zeolite can include Si and Al and has a SiO2:Al2O3 molar ratio of greater than 4:1, an 8-membered ring zeolite having a framework type of AEI, AFT, AFX, CHA, CDO, DDR, EDI, ERI, IHW, ITE, ITW, KFI, MER, MTF, MWF, LEV, LTA, PAU, PWN, RHO, SFW or UFI, a degree of crystallinity of at least 80% as measured by ASTM D535-197, and at least 0.01 wt % of at least one catalytic metal, based on a weight of the synthetic zeolite, where the at least one catalytic metal can include Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mo, W, Re, Co, Ni, Zn, Cr, Mn, Ce, Ga, alloys thereof, or mixtures thereof. At least 95% of the catalytic metal can be disposed within a plurality of pores of the synthetic zeolite.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: April 12, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Aaron Sattler, Michele L. Paccagnini, Pedro M. Serna Merino, Henry K. Klutse
  • Publication number: 20210346875
    Abstract: Catalytic compositions and sequential catalytic methods are generally described. in some embodiments, a composition comprises a first catalyst comprising a Cu-modified zeolite, and a second catalyst capable of a coupling reaction between (a) an intermediate resulting from a reaction of a reactant at the first catalyst, and (b) a co-reagent, wherein a rate of diffusion of the co-reagent within one or more cages and/or pores of the first catalyst is lower than a rate of diffusion of the intermediate within the one or more cages and/or pores of the first catalyst.
    Type: Application
    Filed: March 30, 2021
    Publication date: November 11, 2021
    Applicants: Massachusetts Institute of Technology, ExxonMobil Research and Engineering Company
    Inventors: Yuriy Román-Leshkov, Randall J. Meyer, Pedro M. Serna Merino, Mark Sullivan, Kimberly Dinh
  • Publication number: 20210155565
    Abstract: Processes are provided for the removal of hydrogen from a mixture. The process can be performed by contacting a mixture comprising hydrogen, oxygen, and one or more organic compounds with a synthetic zeolite to produce water or steam. The synthetic zeolite can include Si and Al and has a SiO2:Al2O3 molar ratio of greater than 4:1, an 8-membered ring zeolite having a framework type of AEI, AFT, AFX, CHA, CDO, DDR, EDI, ERI, IHW, ITE, ITW, KFI, MER, MTF, MWF, LEV, LTA, PAU, PWN, RHO, SFW or UFI, a degree of crystallinity of at least 80% as measured by ASTM D535-197, and at least 0.01 wt % of at least one catalytic metal, based on a weight of the synthetic zeolite, where the at least one catalytic metal can include Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mo, W, Re, Co, Ni, Zn, Cr, Mn, Ce, Ga, alloys thereof, or mixtures thereof. At least 95% of the catalytic metal can be disposed within a plurality of pores of the synthetic zeolite.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 27, 2021
    Inventors: Aaron Sattler, Michele L. Paccagnini, Pedro M. Serna Merino, Henry K. Klutse
  • Publication number: 20190168197
    Abstract: A small pore size synthetic zeolite having a degree of crystallinity of at least 80% and comprising at least 0.01 wt % based on the weight of the zeolite of at least one catalytic metal selected from the group consisting of Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mo, W, Re, Co, Ni, Zn, Cr, Mn, Ce, Ga and combinations thereof, wherein at least 80% of the catalytic metal is encapsulated in the zeolite, wherein if the zeolite is an aluminosilicate it has a SiO2:Al2O3 molar ratio of greater than 6:1.
    Type: Application
    Filed: May 24, 2017
    Publication date: June 6, 2019
    Applicant: ExxonMobil Chemical Company - Law Technology
    Inventors: Avelino CORMA CANOS, Javier GUZMAN, Manuel MOLINER MARIN, Pedro M. SERNA MERINO, Karl G. STROHMAIER