Patents by Inventor Pedro Pablo Martin-Alonso

Pedro Pablo Martin-Alonso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11433473
    Abstract: Systems and methods are provided for controlling welding. One embodiment is a method for controlling welding. The method includes initiating induction welding by operating an induction coil along a weld interface of a first composite part comprising a matrix of thermoplastic reinforced by fibers, in order to join the first composite part to a second composite part, determining a measured magnetic field strength at a location distinct from the induction coil, and determining a welding temperature at the weld interface of the first composite part based on the measured magnetic field strength.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: September 6, 2022
    Assignee: The Boeing Company
    Inventors: Francisco Raul Sacchetti, Ulrich Sachs, Pedro Pablo Martin Alonso, Francis J. Samalot, Alexander M. Rubin
  • Patent number: 11235538
    Abstract: Systems and methods are provided for controlling welding. One embodiment is a method for controlling welding of a composite part. The method includes locating a linear fiber optic sensor along a composite part comprising a matrix of thermoplastic reinforced by fibers, measuring temperatures along the weld line via the linear fiber optic sensor, performing induction welding at the composite part along the weld line, determining a continuum of weld temperatures along the weld line, and controlling the induction welding based on the continuum of weld temperatures.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: February 1, 2022
    Assignee: The Boeing Company
    Inventors: Yannick Martijn Buser, Ulrich Sachs, Pedro Pablo Martin Alonso, Francis J. Samalot, Alexander Rubin
  • Publication number: 20210039335
    Abstract: Systems and methods are provided for controlling welding. One embodiment is a method for controlling welding of a composite part. The method includes locating a linear fiber optic sensor along a composite part comprising a matrix of thermoplastic reinforced by fibers, measuring temperatures along the weld line via the linear fiber optic sensor, performing induction welding at the composite part along the weld line, determining a continuum of weld temperatures along the weld line, and controlling the induction welding based on the continuum of weld temperatures.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Inventors: Yannick Busser, Ulrich Sachs, Pedro Pablo Martin Alonso, Francis J. Samalot, Alexander Rubin
  • Publication number: 20210039191
    Abstract: Systems and methods are provided for controlling welding. One embodiment is a method for controlling welding. The method includes initiating induction welding by operating an induction coil along a weld interface of a first composite part comprising a matrix of thermoplastic reinforced by fibers, in order to join the first composite part to a second composite part, determining a measured magnetic field strength at a location distinct from the induction coil, and determining a welding temperature at the weld interface of the first composite part based on the measured magnetic field strength.
    Type: Application
    Filed: August 5, 2020
    Publication date: February 11, 2021
    Inventors: Francisco Raul Sacchetti, Ulrich Sachs, Pedro Pablo Martin Alonso, Francis J. Samalot, Alexander M. Rubin
  • Patent number: 10829691
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: November 10, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez-Rodriguez
  • Patent number: 10329197
    Abstract: A method for a curing cycle of an inorganic thermoset resin, the method comprising: (a) adding a hardener in a concentration from 18 to 30% by weight of the resin to said inorganic thermoset resin and (b) curing the resin at a temperature from 110 to 120° C. An inorganic thermoset resin, comprising a hardener in a concentration from 18 to 30% by weight of the resin. A vehicle interior panel, comprising a composite comprising a composite matrix of a natural fibre set within an inorganic thermoset resin.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 25, 2019
    Assignee: The Boeing Company
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez Rodriguez
  • Publication number: 20190161680
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Ana GONZALEZ-GARCIA, Pedro Pablo MARTIN-ALONSO, Nieves LAPENA-REY, Amelia MARTINEZ-ALONSO, Tomas GONZALEZ-RODRIGUEZ
  • Patent number: 10227530
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: March 12, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez-Rodriguez
  • Publication number: 20170204009
    Abstract: A method for a curing cycle of an inorganic thermoset resin, the method comprising: (a) adding a hardener in a concentration from 18 to 30% by weight of the resin to said inorganic thermoset resin and (b) curing the resin at a temperature from 110 to 120° C. An inorganic thermoset resin, comprising a hardener in a concentration from 18 to 30% by weight of the resin. A vehicle interior panel, comprising a composite comprising a composite matrix of a natural fibre set within an inorganic thermoset resin.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez Rodriguez
  • Patent number: 9678515
    Abstract: The present disclosure provides a lightweight two-stage pressure regulator for controlling the flow of gas from a high pressure source. The two stage pressure regulator comprises a gas inlet, a first piston pressure regulator stage, a second piston pressure regulator stage and a gas outlet. The first piston pressure regulator stage and the second piston pressure regulator stage are arranged to be coaxial such that the gas flow path is substantially along the axis of the first and second piston regulator stages.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 13, 2017
    Assignee: The Boeing Company
    Inventors: Nieves Lapena-Rey, Enrique Troncoso-Munoz, Alfredo Criado Abad, Pedro Pablo Martin-Alonso, Ji Qing
  • Publication number: 20170044440
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 16, 2017
    Inventors: Ana GONZALEZ-GARCIA, Pedro Pablo MARTIN-ALONSO, Nieves LAPENA-REY, Amelia MARTINEZ-ALONSO, Tomas GONZALEZ-RODRIGUEZ
  • Publication number: 20160216715
    Abstract: The present disclosure provides a lightweight two-stage pressure regulator for controlling the flow of gas from a high pressure source. The two stage pressure regulator comprises a gas inlet, a first piston pressure regulator stage, a second piston pressure regulator stage and a gas outlet. The first piston pressure regulator stage and the second piston pressure regulator stage are arranged to be coaxial such that the gas flow path is substantially along the axis of the first and second piston regulator stages.
    Type: Application
    Filed: October 29, 2014
    Publication date: July 28, 2016
    Applicant: The Boeing Company
    Inventors: Nieves Lapena-Rey, Enrique Troncoso-Munoz, Alfredo Criado Abad, Pedro Pablo Martin-Alonso, Ji Qing