Patents by Inventor Peer Sporbert

Peer Sporbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140379356
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Publication number: 20140329194
    Abstract: The invention relates to planning orthodontic treatment for a patient, including surgery, using biological constrains such as those arising from bone, soft tissue, and roots of patient's teeth. The invention disclosed herein provides capability to vary the movement ratio between the teeth and bone and soft tissue through treatment simulation to assess the risk factor associated with a particular treatment plan. The invention further provides capability to monitor results of the treatment to determine the actual movement ratio between the teeth and bone and soft tissue and update the database.
    Type: Application
    Filed: May 5, 2013
    Publication date: November 6, 2014
    Inventors: Rohit Sachdeva, Peer Sporbert
  • Publication number: 20140188448
    Abstract: The present invention discloses orthodontic treatment planning using virtual articulator with the help of a computer workstation. A virtual articulator can be activated from the workstation. The virtual articulator displays opening/closing movements, and left/right excursive movements. One can also adjust the angle of the articular eminence to more accurately display the patient's chewing motion. Treatment planning simulation using virtual articulator can detect collision of teeth and lead to a treatment plan that can avoid such collisions. Composite three dimensional models of dentition obtained by scanning of teeth and through CBCT are used in identifying the articulator; which is then used in virtual simulation by means of software instructions in the workstation.
    Type: Application
    Filed: December 31, 2013
    Publication date: July 3, 2014
    Applicant: OraMetrix, Inc.
    Inventors: Phillip Getto, Peer Sporbert, Markus Kaufmann
  • Patent number: 8469705
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 25, 2013
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 8465280
    Abstract: A method and workstation for orthodontic treatment planning of a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools which the user marks a midline and an aesthetic occlusal plane in a two- or three-dimensional virtual model of the patient, marks an occlusal plane in the virtual model; selects a reference tooth in the virtual model; aligns virtual teeth in the virtual model in a proposed arrangement to treat the patient; manages space between the virtual teeth in the proposed arrangement; and repeats one or more of these steps in an iterative fashion to make any further adjustments in the proposed arrangement.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: June 18, 2013
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Claudia Strauss, Phillip Getto, Sanjeev Taneja, Matthew Johnson, John Penman, Justyna Badura, Danesh De Silva
  • Patent number: 8417366
    Abstract: Method and workstation automatically designing an arch-wire including compensations for auxiliary appliances or biological constraints exerting unknown forces to achieve a pre-planned treatment goal are disclosed. The adjusted customized arch-wire is designed after an initial customized arch-wire has been used to treat a patient and is at or near equilibrium. The initial custom arch-wire is first designed by producing a 3D computer-based, geometrical model of a patient's dentition, locating brackets on the digital tooth model, moving the digital tooth models to planned final positions and orientations, and then calculating a wire which fits in the slots of the brackets while the teeth are in their planned final positions and exerts no forces on the brackets. After a period of time the teeth will move under the force of the wire and will eventually move into positions such that the forces from all appliances and biological systems are in equilibrium.
    Type: Grant
    Filed: May 1, 2010
    Date of Patent: April 9, 2013
    Assignee: Orametrix, Inc.
    Inventors: Phillip Getto, Rohit Sachdeva, Peer Sporbert
  • Patent number: 8192197
    Abstract: A method and apparatus is provided for digitally checking the insertion quality of a target customized virtual arch wire designed during treatment planning prior to actually manufacturing the target arch wire. The method includes the steps of digitally simulating the insertion of the customized target virtual arch wire into the virtual brackets placed up on virtual teeth of a patient in an initial state of interest for checking if the arch wire could be inserted into the virtual brackets without conflicts or collisions. The initial state may be a malocclusion state or any intermediate treatment state of the patient. In the event the target virtual arch wire would cause conflicts, then the simulation optimizes the arch wire design in an attempt to eliminate the conflicts. In another aspect, a method is provided for selecting the recommended starting point for inserting the customized arch wire in the brackets placed on the dentition of the patient in the initial state.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: June 5, 2012
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Dimitij Kouzian, Hans Imgrund, Stephan Maetzel
  • Patent number: 8177551
    Abstract: A method and workstation for evaluation of an orthodontic treatment plan for a patient. The workstation is based on a computing platform having a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient including image data (3D image data and/or 2D image data). The workstation further includes a set of software instructions providing graphical user interface tools by which the user can create a proposed treatment plan (proposed position of the teeth at the end of treatment) in three dimensions. The workstation also provides tools for evaluation of the proposed treatment plan.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 15, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Peer Sporbert, Stephan Maetzel, Hans Imgrund, Phillip Getto, Doke Evan Roberts
  • Patent number: 8152523
    Abstract: A method and system for orthodontic treatment planning, evaluation and quality measurement is provided comprising a workstation having computing platform, a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient. The digitized records include image and other types of data. The computer storage medium further includes a set of software instructions providing graphical user interface tools for providing a user with access to the digitized records for planning orthodontic treatment of a patient. Also provided are reference databases for aiding in the decision process during treatment selection, treatment planning and treatment delivery and progress monitoring and evaluation. Also provided are parameter or criteria measurement techniques and generally acceptable thresholds, which can be updated through learning process and through acquisition of patient data.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: April 10, 2012
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Markus Kaufmann, Rohit Sachdeva, Claudia Strauss, Doke Evan Roberts
  • Patent number: 8142187
    Abstract: A method and apparatus is provided for digitally checking the insertion quality of a target customized virtual arch wire designed during treatment planning prior to actually manufacturing the target arch wire. The method includes the steps of digitally simulating the insertion of the customized target virtual arch wire into the virtual brackets placed up on virtual teeth of a patient in an initial state of interest for checking if the arch wire could be inserted into the virtual brackets without conflicts or collisions. The initial state may be a malocclusion state or any intermediate treatment state of the patient. In the event the target virtual arch wire would cause conflicts, then the simulation optimizes the arch wire design in an attempt to eliminate the conflicts. In another aspect, a method is provided for selecting the recommended starting point for inserting the customized arch wire in the brackets placed on the dentition of the patient in the initial state.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 27, 2012
    Assignee: Orametrix, Inc.
    Inventors: Peer Sporbert, Dimitij Kouzian, Hans Imgrund, Stephan Maetzel
  • Patent number: 8118593
    Abstract: A method and system are disclosed for quickly arriving at a pre-set-up for the orthodontic treatment of a patient based up on the user specified parameters; and thereafter enabling the user in interactively arriving at a final, desired treatment set-up for the patient. Several sub-operations are disclosed for arriving at the orthodontic pre-set-up. These sub-operations can be arranged in a specific sequence for realizing the orthodontic treatment pre-set-up for a patient. According to another aspect of the invention, a global reference system is disclosed that enables consistent treatment planning. The global reference system prevents unintended tooth displacements caused as side effects to the desired tooth displacements.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 21, 2012
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert, Claudia Strauss
  • Patent number: 8121718
    Abstract: Interactive, computer based orthodontist treatment planning, appliance design and appliance manufacturing is described. A scanner is described which acquires images of the dentition which are converted to three-dimensional frames of data. The data from the several frames are registered to each other to provide a complete three-dimensional virtual model of the dentition. Individual tooth objects are obtained from the virtual model. A computer-interactive software program provides for treatment planning, diagnosis and appliance from the virtual tooth models. A desired occlusion for the patient is obtained from the treatment planning software. The virtual model of the desired occlusion and the virtual model of the original dentition provide a base of information for custom manufacture of an orthodontic appliance.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 21, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rüdger Rubbert, Thomas Weise, Friedrich Riemeier, Rohit Sachdeva, Werner Butscher, Peer Sporbert, Hans Imgrund, Lutz Pfeil, Hans-Florian Geerdes, Dimitrij Kouzian, Mario Leichner, Stephan Maetzel, Peter See, Jens Troeger
  • Patent number: 8113829
    Abstract: An integrated system is described in which digital image data of a patient, obtained from a variety of image sources, including CT scanner, X-Ray, 2D or 3D scanners and color photographs, are combined into a common coordinate system to create a virtual three-dimensional patient model. Software tools are provided for manipulating the virtual patient model to simulation changes in position or orientation of craniofacial structures (e.g., jaw or teeth) and simulate their affect on the appearance of the patient. The simulation (which may be pure simulations or may be so-called “morphing” type simulations) enables a comprehensive approach to planning treatment for the patient. In one embodiment, the treatment may encompass orthodontic treatment. Similarly, surgical treatment plans can be created. Data is extracted from the virtual patient model or simulations thereof for purposes of manufacture of customized therapeutic devices for any component of the craniofacial structures, e.g., orthodontic appliances.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: February 14, 2012
    Assignee: Orametrix, Inc.
    Inventors: Rohit Sachdeva, Sanjeev Taneja, Peer Sporbert, Phillip Getto, Stephan Maetzel, Hans Imgrund, Charles L. Abraham
  • Publication number: 20120015316
    Abstract: A method and apparatus are disclosed enabling an orthodontist or a user to create an unified three dimensional virtual craniofacial and dentition model of actual, as-is static and functional anatomy of a patient, from data representing facial bone structure; upper jaw and lower jaw; facial soft tissue; teeth including crowns and roots; information of the position of the roots relative to each other; and relative to the facial bone structure of the patient; obtained by scanning as-is anatomy of craniofacial and dentition structures of the patient with a volume scanning device; and data representing three dimensional virtual models of the patient's upper and lower gingiva, obtained from scanning the patient's upper and lower gingiva either (a) with a volume scanning device, or (a) with a surface scanning device. Such craniofacial and dentition models of the patient can be used in optimally planning treatment of a patient.
    Type: Application
    Filed: May 15, 2011
    Publication date: January 19, 2012
    Inventors: Rohit Sachdeva, Peer Sporbert, Phillip Getto, Markus Kaufmann, Charles L. Abraham
  • Publication number: 20110267337
    Abstract: A method and workstation are described for designing compensation in an orthodontic archwire in order to offset the bracket-slot-to-wire play and realize the disered displacement in a tooth from an initial position to the target position. Bracket-slot-to-wire play can reduce the effectiveness of an archwire in bringing the teeth of an orthodontic patient from malocclusion to desired target. Bracket-slot-to-wire play is the difference in volume between the size of a bracket slot, which is larger than the size of the archwire, and the size of the sliding segment of an archwire inserted in the bracket slot. Customized archwires comprise alternating sliding segments interconnected by segments with bends and/or twists in three-dimensional space. The sliding segments are placed in the bracket slots and exert forces on the brackets created by the segments with bends and/or twists for moving the teeth towards the target positions.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Inventors: Phillip Getto, Rohit Sachdeva, Peer Sporbert, Dimitij Kouzian
  • Publication number: 20110269097
    Abstract: A method and system for orthodontic treatment planning, evaluation and quality measurement is provided comprising a workstation having computing platform, a graphical user interface, a processor and a computer storage medium containing digitized records pertaining to a patient. The digitized records include image and other types of data. The computer storage medium further includes a set of software instructions providing graphical user interface tools for providing a user with access to the digitized records for planning orthodontic treatment of a patient. Also provided are reference databases for aiding in the decision process during treatment selection, treatment planning and treatment delivery and progress monitoring and evaluation. Also provided are parameter or criteria measurement techniques and generally acceptable thresholds, which can be updated through learning process and through acquisition of patient data.
    Type: Application
    Filed: March 24, 2011
    Publication date: November 3, 2011
    Inventors: Peer Sporbert, Markus Kaufmann, Rohit Sachdeva, Claudia Strauss, Doke Evan Roberts
  • Publication number: 20110270583
    Abstract: Method and workstation automatically designing an arch-wire including compensations for auxiliary appliances or biological constraints exerting unknown forces to achieve a pre-planned treatment goal are disclosed. The adjusted customized arch-wire is designed after an initial customized arch-wire has been used to treat a patient and is at or near equilibrium. The initial custom arch-wire is first designed by producing a 3D computer-based, geometrical model of a patient's dentition, locating brackets on the digital tooth model, moving the digital tooth models to planned final positions and orientations, and then calculating a wire which fits in the slots of the brackets while the teeth are in their planned final positions and exerts no forces on the brackets. After a period of time the teeth will move under the force of the wire and will eventually move into positions such that the forces from all appliances and biological systems are in equilibrium.
    Type: Application
    Filed: May 1, 2010
    Publication date: November 3, 2011
    Inventors: Phillip Getto, Rohit Sachdeva, Peer Sporbert
  • Publication number: 20110268327
    Abstract: A method and apparatus are disclosed enabling an orthodontist or a user to create an integrated three dimensional digital model of dentition and surrounding anatomy of an orthodontic patient from a three-dimensional digital model obtained using a scanner with a three-dimensional digital model obtained using a Cone Beam Computed Tomography (CBCT) or Magnetic Resonance Tomography (MRT) imaging devices. The digital data obtained from scanning as well as from CBCT imaging are downloaded into a computer workstation, and registered together in order to create a comprehensive 3-D model of the patient's teeth with roots, bones and soft tissues.
    Type: Application
    Filed: May 1, 2010
    Publication date: November 3, 2011
    Inventors: Phillip Getto, Rohit Sachdeva, Peer Sporbert, Markus Kaufmann
  • Patent number: 8047847
    Abstract: A method is provided for automatically separating tooth crowns and gingival tissue in a virtual three-dimensional model of teeth and associated anatomical structures. The method orients the model with reference to a plane and automatically determines local maxima of the model and areas bounded by the local maxima. The method automatically determines saddle points between the local maxima in the model, the saddle points corresponding to boundaries between teeth. The method further positions the saddle points along a dental arch form. For each tooth, the method automatically identifies a line or path along the surface of the model linking the saddle points to each other, the path marking a transition between teeth and gingival tissue and between adjacent teeth in the model. The areas bounded by the lines correspond to the tooth crowns; the remainder of the model constitutes the gingival tissue.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 1, 2011
    Assignee: Ora Metrix, Inc.
    Inventors: Markus Kaufmann, Peer Sporbert, Phillip Getto
  • Patent number: 8029277
    Abstract: It is a common practice with orthodontists in planning treatment for a patient to prescribe dental changes to cure the malocclusion condition of the patient in terms of mesial or distal, buccal or lingual, and occlusal (coronal) or gingival translational displacements; and facial or lingual torque; mesial or distal angulation and mesial or distal rotation displacements. A method and workstation for measuring the dental displacements, or conversely placing the dental elements in desired positions as per the prescriptions for their displacements in a consistent, reproducible and accurate manner is disclosed. A novel orthogonal curvilinear coordinate system is disclosed that enables the measurement of the tooth displacements in conjunction with the individual tooth axes system.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: October 4, 2011
    Assignee: Orametrix, Inc.
    Inventors: Hans Imgrund, Peer Sporbert