Patents by Inventor Peeyush Nandwana

Peeyush Nandwana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11608546
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: March 21, 2023
    Assignees: UT-Battelle LLC, Eck Industries Incorporated, Iowa State University Research Foundation, Inc., Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation
    Inventors: Lawrence Allard, Jr., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Patent number: 11155903
    Abstract: Disclosed herein are embodiments of soft magnetic alloy embodiments for use in additive manufacturing and structures fabricated from such alloys. In some embodiments, the fabricated structures comprise a continuous thin wall (or plurality thereof) having a geometry that promotes reduced eddy current losses and other performance enhancements. In some embodiments, the fabricated structures are used to make components, such as transformer cores and/or electric motors.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: October 26, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Alexander Plotkowski, Ryan Dehoff, Frederick List, III, Jason Pries, Benjamin Stump, Keith Carver, Peeyush Nandwana
  • Publication number: 20210214823
    Abstract: Disclosed herein are embodiments of an Al—Ce—Mn alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 15, 2021
    Inventors: Lawrence Allard, JR., Sumit Bahl, Ryan Dehoff, Hunter Henderson, Michael Kesler, Scott McCall, Peeyush Nandwana, Ryan Ott, Alex Plotkowski, Orlando Rios, Amit Shyam, Zachary Sims, Kevin Sisco, David Weiss, Ying Yang
  • Publication number: 20210129270
    Abstract: Disclosed herein are embodiments of an Al—Ce—Ni alloy for use in additive manufacturing. The disclosed alloy embodiments provide fabricated objects, such as bulk components, comprising a heterogeneous microstructure and having good mechanical properties even when exposed to conditions used during the additive manufacturing process. Methods for making and using alloy embodiments also are disclosed herein.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 6, 2021
    Inventors: Ryan R. Dehoff, Hunter B. Henderson, Scott McCall, Richard Michi, Peeyush Nandwana, Ryan Ott, Alexander J. Plotkowski, Orlando Rios, Amit Shyam, Zachary C. Sims, Kevin D. Sisco, David Weiss, Ying Yang
  • Publication number: 20210057149
    Abstract: A bonded soft magnet object comprising bonded soft magnetic particles of an iron-containing alloy having a soft magnet characteristic, wherein the bonded soft magnetic particles have a particle size of at least 200 nm and up to 100 microns. Also described herein is a method for producing the bonded soft magnet by indirect additive manufacturing (IAM), such as by: (i) producing a soft magnet preform by bonding soft magnetic particles with an organic binder, wherein the magnetic particles have an iron-containing alloy composition with a soft magnet characteristic, and wherein the particles of the soft magnet material have a particle size of at least 200 nm and up to 100 microns; (ii) subjecting the preform to an elevated temperature sufficient to remove the organic binder to produce a binder-free preform; and (iii) sintering the binder-free preform at a further elevated temperature to produce the bonded soft magnet.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Mariappan Parans Paranthaman, Corson L. Cramer, Peeyush Nandwana, Amelia M. Elliott, Chins Chinnasamy
  • Publication number: 20200263281
    Abstract: Disclosed herein are embodiments of soft magnetic alloy embodiments for use in additive manufacturing and structures fabricated from such alloys. In some embodiments, the fabricated structures comprise a continuous thin wall (or plurality thereof) having a geometry that promotes reduced eddy current losses and other performance enhancements. In some embodiments, the fabricated structures are used to make components, such as transformer cores and/or electric motors.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 20, 2020
    Inventors: Alexander Plotkowski, Ryan Dehoff, Frederick List, III, Jason Pries, Benjamin Stump, Keith Carver, Peeyush Nandwana