Patents by Inventor Pegah Seddighian

Pegah Seddighian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230125660
    Abstract: In one embodiment, a silicon photonic integrated circuit (PIC) includes a pair of Mach-Zehnder Interferometers (MZI) with a phase shifter to function as a 1x2 optical switches. On one path between the MZIs is a wavelength interleaver. The MZI switch can be controlled to either an all-pass mode or a by-pass mode, therefore setting configurable optical demultiplexing bandwidths to support dual 1.6 T FR8/800G FR4 network backward compatibility. The configurable multiplexer operates at set-and-forget mode for the entire operating temperature and the product’s lifetime.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Inventors: Wenhua Lin, Saeed Fathololoumi, Pegah Seddighian, Tiehui Su, David Chak Wang Hui
  • Patent number: 10996408
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical coupler including an optical waveguide to guide light to an optical fiber. In embodiments, the optical waveguide includes a tapered segment to propagate the received light to the optical fiber. In embodiments, the tapered segment is buried below a surface of a semiconductor substrate to transition the received light within the semiconductor substrate from a first optical mode to a second optical mode to reduce a loss of light during propagation of the received light from the optical waveguide to the optical fiber. In embodiments, the surface of the semiconductor substrate comprises a bottom planar surface of a silicon photonic chip that includes at least one or more of passive or active photonic components. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: May 4, 2021
    Assignee: Intel Corporation
    Inventors: John Heck, Harel Frish, Reece DeFrees, George A. Ghiurcan, Hari Mahalingam, Pegah Seddighian
  • Publication number: 20190339466
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical coupler including an optical waveguide to guide light to an optical fiber. In embodiments, the optical waveguide includes a tapered segment to propagate the received light to the optical fiber. In embodiments, the tapered segment is buried below a surface of a semiconductor substrate to transition the received light within the semiconductor substrate from a first optical mode to a second optical mode to reduce a loss of light during propagation of the received light from the optical waveguide to the optical fiber. In embodiments, the surface of the semiconductor substrate comprises a bottom planar surface of a silicon photonic chip that includes at least one or more of passive or active photonic components. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: John Heck, Harel Frish, Reece DeFrees, George A. Ghiurcan, Hari Mahalingam, Pegah Seddighian
  • Patent number: 10330864
    Abstract: An optical device includes a waveguide on a base and a taper on the base. The waveguide and the taper are optically aligned such that the taper and the waveguide exchange light signals during operation of the device. The taper is configured to guide the light signals through a taper material and the waveguide is configured to guide the light signals through a waveguide medium. The taper material and the waveguide medium are different materials and/or have different indices of refraction.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 25, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Mehdi Asghari, Wei Qian, Pegah Seddighian, Bradley Jonathan Luff, Dazeng Feng, Joan Fong, Cheng-Chih Kung, Monish Sharma
  • Publication number: 20180172909
    Abstract: An optical device includes a waveguide on a base and a taper on the base. The waveguide and the taper are optically aligned such that the taper and the waveguide exchange light signals during operation of the device. The taper is configured to guide the light signals through a taper material and the waveguide is configured to guide the light signals through a waveguide medium. The taper material and the waveguide medium are different materials and/or have different indices of refraction.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Inventors: Mehdi Asghari, Wei Qian, Pegah Seddighian, Bradley Jonathan Luff, Dazeng Feng, Joan Fong, Cheng-Chih Kung, Monish Sharma
  • Patent number: 9705278
    Abstract: An optical system includes a laser cavity on a base. The laser cavity generates a light signal in response to application of an electrical current to the laser cavity. The system includes first electronics that apply a target level of the electrical current to the laser cavity so as to cause the laser cavity to generate the light signal. The light signal experiences mode hops at electrical current levels that shift to higher current levels in response to increasing laser operation times. A first one of the mode hops occurs at a first current level and a second one of the mode hops occurs at a second current level that is higher than the first current level. The system also includes a phase shifter that interacts with the laser cavity so as to shift the mode hops to lower current levels than occur in the absence of the phase shifter.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 11, 2017
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Saeed Fathololoumi, Dazeng Feng, Amir Ali Tavallaee, Jacob Levy, Pegah Seddighian, Mehdi Asghari
  • Publication number: 20170093114
    Abstract: An optical system includes a laser cavity on a base. The laser cavity generates a light signal in response to application of an electrical current to the laser cavity. The system includes first electronics that apply a target level of the electrical current to the laser cavity so as to cause the laser cavity to generate the light signal. The light signal experiences mode hops at electrical current levels that shift to higher current levels in response to increasing laser operation times. A first one of the mode hops occurs at a first current level and a second one of the mode hops occurs at a second current level that is higher than the first current level. The system also includes a phase shifter that interacts with the laser cavity so as to shift the mode hops to lower current levels than occur in the absence of the phase shifter.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 30, 2017
    Inventors: Saeed Fathololoumi, Dazeng Feng, Amir Ali Tavallaee, Jacob Levy, Pegah Seddighian, Mehdi Asghari
  • Publication number: 20160373191
    Abstract: An optical link transmits light between a transmitter and a receiver. The transmitter includes a laser cavity that outputs a laser light signal. The laser cavity is configured such that the mode of the laser light signal hops during operation of the optical link. The transmitter outputs an output light signal that includes light from the laser light signal. The output light signal travels a data travel distance before being received at the receiver. The data travel distance is greater than 0 m and less than 1 km and the optical link has a Bit Error Rate less than 10?12. In some instances, the laser cavity is an external cavity laser.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 22, 2016
    Inventors: Saeed Fathololoumi, Dazeng Feng, Amir Ali Tavallaee, Jacob Levy, Pegah Seddighian, Mehdi Asghari