Patents by Inventor Peggy J. Clews

Peggy J. Clews has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11552211
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: January 10, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 10243095
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 26, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 10214415
    Abstract: A silicon carbide based MOS integrated circuit is monolithically integrated with a suspended piezoelectric aluminum nitride member to form a high-temperature-capable hybrid MEMS-over-MOS structure. In the integrated structure, a post-MOS passivation layer of silicon carbide is deposited over the MOS passivation and overlain by a structural layer of the MEMS device. Electrical contact to refractory metal conductors of the MOS integrated circuit is provided by tungsten vias that are formed so as to pass vertically through the structural layer and the post-MOS passivation layer.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: February 26, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Benjamin Griffin, Scott D. Habermehl, Peggy J. Clews
  • Publication number: 20180323325
    Abstract: A method is provided for making a molded photovoltaic module. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Publication number: 20180323324
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 10038113
    Abstract: A moldable photovoltaic module is provided. The module includes a flexible polymeric flex-circuit substrate having an electrically conductive printed wiring pattern and solder pads defined on it. Small photovoltaic cells are affixed to the flex-circuit substrate by back-surface contacts in electrical contact with the solder pads. At least one thermoformable polymeric film is joined to the flex-circuit substrate. Each said solder pad comprises a solder composition that, after an initial melt, has a melting point that lies above at least a portion of the temperature range for thermoforming the polymeric film.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 31, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jeffrey S. Nelson, Michael Hibbs, Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Carlos Anthony Sanchez, Vipin P. Gupta, Peggy J. Clews
  • Patent number: 9824932
    Abstract: Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: November 21, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Kenneth Wojciechowski, Roy Olsson, Peggy J. Clews, Todd Bauer
  • Patent number: 9646874
    Abstract: Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: May 9, 2017
    Assignee: Sandia Corporation
    Inventors: Kenneth Wojciechowski, Roy H. Olsson, Peggy J. Clews, Todd Bauer
  • Patent number: 9484216
    Abstract: The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl3, a common additive.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: November 1, 2016
    Assignee: Sandia Corporation
    Inventors: Todd Bauer, Andrew John Gross, Peggy J. Clews, Roy H. Olsson
  • Patent number: 9126392
    Abstract: A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 8, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Jose Luis Cruz-Campa, Murat Okandan, Paul J. Resnick, Carlos Anthony Sanchez, Peggy J. Clews, Vipin P. Gupta
  • Patent number: 8614395
    Abstract: A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compound semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 24, 2013
    Assignee: Sandia Corporation
    Inventors: Gregory N. Nielson, Murat Okandan, Jose Luis Cruz-Campa, Paul J. Resnick, Mark Woodbury Wanlass, Peggy J. Clews
  • Patent number: 8236611
    Abstract: A method is disclosed for singulating die from a substrate having a sacrificial layer and one or more device layers, with a retainer being formed in the device layer(s) and anchored to the substrate. Deep Reactive Ion Etching (DRIE) etching of a trench through the substrate from the bottom side defines a shape for each die. A handle wafer is then attached to the bottom side of the substrate, and the sacrificial layer is etched to singulate the die and to form a frame from the retainer and the substrate. The frame and handle wafer, which retain the singulated die in place, can be attached together with a clamp or a clip and to form a package for the singulated die. One or more stops can be formed from the device layer(s) to limit a sliding motion of the singulated die.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 7, 2012
    Assignee: Sandia Corporation
    Inventors: Robert C. Anderson, Randy J. Shul, Peggy J. Clews, Michael S. Baker, Maarten P. De Boer
  • Patent number: 6893578
    Abstract: An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H2SO4). These acids can be used in the ratio of 1:3 to 3:1 HF:H2SO4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H2SO4 can be provided as “semiconductor grade” acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H2SO4.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 17, 2005
    Assignee: Sandia Corporation
    Inventors: Peggy J. Clews, Seethambal S. Mani