Patents by Inventor Peggy Lynn Baehmann

Peggy Lynn Baehmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9682756
    Abstract: A propeller assembly includes a central hub including a first forward-facing end, a second aft-facing end, a hub body extending therebetween, and a plurality of channels spaced circumferentially around the central hub. The propeller assembly further includes blade wedges configured to be inserted into and to retain blades within the channels of the central hub. Each blade includes a blade dovetail including a dovetail face configured to engage a respective channel sidewall and/or a respective wedge sidewall. The dovetail face includes a bearing portion that engages the respective channel sidewall and/or the respective wedge sidewall and a clearance portion that is spaced from the respective channel sidewall and/or the respective wedge sidewall by a clearance gap during a first loading of the propeller assembly and that engages the respective channel sidewall or wedge sidewall during a second loading, the second loading greater than the first loading.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: June 20, 2017
    Assignee: General Electric Company
    Inventors: Nicholas Joseph Kray, Stefaan Guido Van Nieuwenhove, Peggy Lynn Baehmann
  • Publication number: 20170145986
    Abstract: A rotor blade assembly including a first blade section including a joint end and a custom fit second blade section including a joint end, and a method of fabricating the rotor blade assembly is disclosed. One of the first blade section or the custom fit second blade section includes an inner surface defining a cavity. The cavity is configured to receive the joint end of the other one of the blade sections in an overlapping configuration to define an overlapping region and a mating joint. A joining means is used to secure the joint ends of the blade sections. A profile of the outer surface of the custom fit second blade section generally corresponds to the aerodynamic profile of the first blade section such that a substantially continuous aerodynamic profile is defined between the blade sections when the joint ends are configured in the overlapping configuration.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Peggy Lynn Baehmann, Shridhar Champaknath Nath, Shatil Sinha
  • Patent number: 9534580
    Abstract: A fluid turbine blade and method of fabrication are provided. The fluid turbine blade includes a centrally disposed longitudinal spar having a substantially circumferential cross section. The fluid turbine blade also includes at least one chord stiffener coupled to the longitudinal spar. The fluid turbine blade further includes a torsionally compliant segmented skin coupled to the at least one chord stiffener. The centrally disposed longitudinal spar and the torsionally compliant segmented skin are functionally decoupled to relieve the torsionally compliant segmented skin of one or more of a flapwise load condition, an edgewise load condition and a torsional load condition.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 3, 2017
    Assignee: General Electric Company
    Inventors: Chandra Sekher Yerramalli, Peggy Lynn Baehmann, Ken Ivcar Salas, Mohammad Salah Attia, Haifeng Zhao
  • Publication number: 20160311519
    Abstract: An aerodynamic dome component that is placed in front of a wind turbine hub includes an outer ring, a central axle disposed relative to the outer ring, a plurality of radially extending tensioning members and a skin-like covering. The plurality of radially extending tensioning members are coupled to the outer ring at a first end and to the central axle at a second end. The outer ring, the plurality of radially extending tensioning members and the central axle together form an underlying dome support structure. The skin-like covering is configured to envelop at least a portion of the underlying dome support structure to form at least a portion of the aerodynamic dome component and define a front dome portion. The skin-like covering enveloping at least a portion of the underlying dome support structure may further define a rear dome portion, wherein the rear dome portion is configured downwind from the front dome portion.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Inventors: Fulton Jose Lopez, Daniel Jason Erno, Peggy Lynn Baehmann, Robert Michael Zirin
  • Patent number: 9399919
    Abstract: A wind blade is provided. The wind blade includes a body having an aerodynamic contour extended between a blade root and a blade tip. The wind blade also includes an extension tip sleeve arranged over the blade tip. The extension tip sleeve further includes a first portion having an extension blade and one or more structural ribs arranged on a pressure side of the wind blade. The extension tip sleeve also includes a second portion having a support structure located on a suction side of the wind blade. Furthermore, the wind blade includes a fairing having an airfoil shape for covering the one or more structural ribs, and the support structure of the extension tip sleeve.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: July 26, 2016
    Assignee: General Electric Company
    Inventors: Peggy Lynn Baehmann, Jaikumar Loganathan, Anindya Sengupta, Vasanth Kumar Balaramudu, Steven Robert Hayashi
  • Publication number: 20160040650
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Dmitry Floryovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Fulton Jose Lopez, Daniel Jason Erno, Robert Michael Zirin, Anurag Gupta
  • Patent number: 9249776
    Abstract: An aerodynamic dome structure that is placed in front of a wind turbine hub includes a plurality of arcuate panels. The arcuate panels are interconnected to form a dome-shaped structure. A plurality of arcuate radial spar supports may be employed to support the arcuate panels.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Peggy Lynn Baehmann, Fulton Jose Lopez, Ian David Wilson, Robert Michael Zirin
  • Patent number: 9194363
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 24, 2015
    Assignee: General Electric Company
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, Jr., Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Anurag Gupta
  • Publication number: 20150233342
    Abstract: An aerodynamic dome structure that is placed in front of a wind turbine hub includes a plurality of arcuate panels. The arcuate panels are interconnected to form a dome-shaped structure. A plurality of arcuate radial spar supports may be employed to support the arcuate panels.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peggy Lynn Baehmann, Fulton Jose Lopez, Ian David Wilson, Robert Michael Zirin
  • Patent number: 9040138
    Abstract: A composite article including a composite component, a metallic component and one or more interlock components. The composite component including a plurality of composite plies and extending heightwise from a component base to a component tip and lengthwise between spaced apart component first and second edges, the composite. The metallic component including a first surface and a second surface and a plurality of openings formed therein extending from the first surface to the second surface. The metallic component including at least a portion substantially or fully embedded in the composite component. The one or more interlock components is interwoven through one or more of the plurality of openings in the metallic component and extending into and at least partially embedded in the composite component to provide an interlocking system between the composite component and the metallic component. A method of fabrication of a composite article is also provided.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 26, 2015
    Assignee: General Electric Company
    Inventors: Shatil Sinha, Scott Roger Finn, Nicholas Joseph Kray, Peggy Lynn Baehmann, Dong Jin Shim, Gregory Carl Gemeinhardt
  • Publication number: 20140341715
    Abstract: A rotary machine includes a machine stator and a machine rotor rotatable relative to the machine stator and having a metal shaft portion, a composite impeller portion, and at least a first metal ring portion securing the composite impeller portion to the metal shaft portion, the metal ring portion having a first interface with the composite impeller portion and a second interface with the metal shaft portion.
    Type: Application
    Filed: December 6, 2012
    Publication date: November 20, 2014
    Inventors: Peggy Lynn Baehmann, Scott Roger Finn, Andrea Massini, Iacopo Giovannetti
  • Publication number: 20140322482
    Abstract: A composite article including a composite component, a metallic component and one or more interlock components. The composite component including a plurality of composite plies and extending heightwise from a component base to a component tip and lengthwise between spaced apart component first and second edges, the composite. The metallic component including a first surface and a second surface and a plurality of openings formed therein extending from the first surface to the second surface. The metallic component including at least a portion substantially or fully embedded in the composite component. The one or more interlock components is interwoven through one or more of the plurality of openings in the metallic component and extending into and at least partially embedded in the composite component to provide an interlocking system between the composite component and the metallic component. A method of fabrication of a composite article is also provided.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Applicant: General Electric Company
    Inventors: Shatil Sinha, Scott Roger Finn, Nicholas Joseph Kray, Peggy Lynn Baehmann, Dong Jin Shim, Gregory Carl Gemeinhardt
  • Publication number: 20140241895
    Abstract: A fluid turbine blade and method of fabrication are provided. The fluid turbine blade includes a centrally disposed longitudinal spar having a substantially circumferential cross section. The fluid turbine blade also includes at least one chord stiffener coupled to the longitudinal spar. The fluid turbine blade further includes a torsionally compliant segmented skin coupled to the at least one chord stiffener. The centrally disposed longitudinal spar and the torsionally compliant segmented skin are functionally decoupled to relieve the torsionally compliant segmented skin of one or more of a flapwise load condition, an edgewise load condition and a torsional load condition.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chandra Sekher Yerramalli, Peggy Lynn Baehmann, Ken Ivcar Salas, Mohammad Salah Attia, Haifeng Zhao
  • Publication number: 20140186175
    Abstract: A wind blade is provided. The wind blade includes a body having an aerodynamic contour extended between a blade root and a blade tip. The wind blade also includes an extension tip sleeve arranged over the blade tip. The extension tip sleeve further includes a first portion having an extension blade and one or more structural ribs arranged on a pressure side of the wind blade. The extension tip sleeve also includes a second portion having a support structure located on a suction side of the wind blade. Furthermore, the wind blade includes a fairing having an airfoil shape for covering the one or more structural ribs, and the support structure of the extension tip sleeve.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peggy Lynn Baehmann, Jaikumar Loganathan, Anindya Sengupta, Vasanth Kumar Balaramudu, Steven Robert Hayashi
  • Publication number: 20140161620
    Abstract: A composite article including composite component extending heightwise from a component base to a component tip and lengthwise between spaced apart component first and second edges. Component plies having widthwise spaced apart ply first and second sides and ply edges therebetween. Component mounted on a spar which includes a shank extending heightwise into the composite component, tab at upper end of shank and substantially or fully embedded in the composite component, and tab tip. Ply edges of at least a first portion of the plies directly or indirectly contacting or pressing against the tab. Ply edges of at least a second portion of the plies may directly or indirectly contact or press against the tab tip. Ply edges of first portion may press against one or more indented or recessed surfaces in the tab. The composite article may be a composite blade or vane including a composite airfoil.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nicholas Joseph Kray, Scott Roger Finn, Peggy Lynn Baehmann, Dong-Jin Shim, Gregory Carl Gemeinhardt
  • Publication number: 20140161621
    Abstract: A composite article including composite component mounted on a spar including a shank extending heightwise from below component base up into composite component. Tab at an upper end of shank substantially or fully embedded in the composite component and at least one ply surface pattern of the composite component contacting and generally conforming to at least one spar surface pattern on the tab. Spar surface pattern may include spaced apart spar surface protrusions with spar surface spaces therebetween and spar surface protrusions extending outwardly from spar and disposed between tows in ply surface pattern. Tows may be layed up in spar surface spaces. Spar surface pattern may include continuous or segmented spaced spar surface protrusions and spar surface spaces therebetween with tows in ply surface pattern disposed in spar surface spaces. The composite article may be a composite blade or vane including a composite airfoil.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nicholas Joseph Kray, Scott Roger Finn, Peggy Lynn Baehmann, Joel Primmer White
  • Publication number: 20140003940
    Abstract: A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dmytro Floriyovych Opaits, Seyed Gholamali Saddoughi, Grover Andrew Bennett, JR., Matthew Patrick Boespflug, Stephen Bertram Johnson, Peggy Lynn Baehmann, Anurag Gupta
  • Patent number: 8510947
    Abstract: A method includes joining an integral bulkhead and a blade shell to form a blade and separating the blade into two blade segments at a location including the integral bulkhead such that each blade segment comprises a portion of the integral bulkhead and a portion of the blade shell.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Bowden Kirkpatrick, Peggy Lynn Baehmann, Shu Ching Quek, Grama Narasimhaprasad Praveen, Youdong Zhou
  • Publication number: 20120141287
    Abstract: A joint for connecting a first blade segment and a second blade segment of a wind turbine rotor blade is disclosed. The joint includes a body, the body including an outer surface and an inner surface. The outer surface has an aerodynamic contour that generally corresponds to an aerodynamic contour of the first blade segment and the second blade segment. The body includes a pressure side and a suction side extending between a leading edge and a trailing edge. In some embodiments, the joint further includes a channel defined in the outer surface of the body. The channel includes a generally continuous base wall extending between opposing sidewalls. The inner surface includes the base wall. In other embodiments, the joint further includes a channel defined in the body, and a shell extending from the body in a generally span-wise direction.
    Type: Application
    Filed: August 29, 2011
    Publication date: June 7, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Alan Hynum, Charles Erklin Seeley, Bruce Clark Busbey, Brandon Shane Gerber, Peggy Lynn Baehmann, Roger Neal Johnson
  • Patent number: 7998303
    Abstract: A method of assembling a wind turbine blade comprises providing a first blade segment comprising at least two first spar cap segments; providing a second blade segment comprising at least two second spar cap segments; inserting the second blade segment into the first blade segment wherein a spar cap cavity is formed between each set of corresponding first and second spar cap segments; injecting an adhesive into the spar cap cavities to bond the blade segments together, wherein a scarf joint is formed between each set of corresponding first and second spar cap segments.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: August 16, 2011
    Assignee: General Electric Company
    Inventors: Peggy Lynn Baehmann, Thomas Miebach, Eric John Telfeyan, Wendy Wen-Ling Lin, Chandra Sekher Yerramalli, Shu Ching Quek