Patents by Inventor Pehr E. Pehrsson

Pehr E. Pehrsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11046579
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: June 29, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Publication number: 20200109049
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Patent number: 10501316
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: December 10, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Patent number: 10167192
    Abstract: Disclosed herein is a structure having: a support, a plurality of nanowires perpendicular to the support, and an electrode in contact with a first end of each nanowire. Each nanowire has a second end in contact with the support. The electrode contains a plurality of perforations. The electrode contains a plurality of perforations. Also disclosed herein is a method of: providing the above support and nanowires; depositing a layer of a filler material that covers a portion of each nanowire and leaves a first end of each nanowire exposed; depositing a plurality of nanoparticles onto the filler material; depositing an electrode material on the nanoparticles, the ends of the nanowires, and any exposed filler material; and removing the nanoparticles and filler material to form an electrode in contact with the first end of each nanowire; wherein the electrode contains a plurality of perforations.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: January 1, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Hyun Jin In, Christopher Field, Pehr E. Pehrsson
  • Publication number: 20180237294
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Patent number: 9422158
    Abstract: Disclosed herein is a structure having: a support, a plurality of nanowires perpendicular to the support, and an electrode in contact with a first end of each nanowire. Each nanowire has a second end in contact with the support. The electrode contains a plurality of perforations. The electrode contains a plurality of perforations. Also disclosed herein is a method of: providing the above support and nanowires; depositing a layer of a filler material that covers a portion of each nanowire and leaves a first end of each nanowire exposed; depositing a plurality of nanoparticles onto the filler material; depositing an electrode material on the nanoparticles, the ends of the nanowires, and any exposed filler material; and removing the nanoparticles and filler material to form an electrode in contact with the first end of each nanowire; wherein the electrode contains a plurality of perforations.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 23, 2016
    Assignee: The United States of Amerixa, as represented by the Secretary of the Navy
    Inventors: Pehr E Pehrsson, Chistopher Field, Hyun Jin In
  • Publication number: 20160238554
    Abstract: Disclosed herein is a structure having: a support, a plurality of nanowires perpendicular to the support, and an electrode in contact with a first end of each nanowire. Each nanowire has a second end in contact with the support. The electrode contains a plurality of perforations. The electrode contains a plurality of perforations. Also disclosed herein is a method of: providing the above support and nanowires; depositing a layer of a filler material that covers a portion of each nanowire and leaves a first end of each nanowire exposed; depositing a plurality of nanoparticles onto the filler material; depositing an electrode material on the nanoparticles, the ends of the nanowires, and any exposed filler material; and removing the nanoparticles and filler material to form an electrode in contact with the first end of each nanowire; wherein the electrode contains a plurality of perforations.
    Type: Application
    Filed: February 22, 2016
    Publication date: August 18, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Hyun Jin In, Christopher Field, Pehr E. Pehrsson
  • Publication number: 20120119760
    Abstract: Disclosed herein is a structure having: a support, a plurality of nanowires perpendicular to the support, and an electrode in contact with a first end of each nanowire. Each nanowire has a second end in contact with the support. The electrode contains a plurality of perforations. The electrode contains a plurality of perforations. Also disclosed herein is a method of: providing the above support and nanowires; depositing a layer of a filler material that covers a portion of each nanowire and leaves a first end of each nanowire exposed; depositing a plurality of nanoparticles onto the filler material; depositing an electrode material on the nanoparticles, the ends of the nanowires, and any exposed filler material; and removing the nanoparticles and filler material to form an electrode in contact with the first end of each nanowire; wherein the electrode contains a plurality of perforations.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Pehr E. Pehrsson, Chistopher Field, Hyun Jin In
  • Patent number: 6348240
    Abstract: The present invention concerns a process for modifying oxidizable surfaces, including diamond surfaces, including methods for metallizing these surfaces, where these methods include oxidation of these surfaces. The present invention also relates to the products of these methods. In this process, a surface is first plasma oxidized, usually under an RF O2 plasma. Chemical functional groups are then attached to the surface. If the surface is to be metallized, the chemical functional groups are selected to be catalyzable, the surface is then catalyzed for electroless metallization, and the surface is finally treated with an electroless plating solution to metallize the surface. If modified surface is to be patterned, the modified surface is exposed through a mask to pattern the surface after the attachment of the chemical functional groups.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: February 19, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeffrey M. Calvert, Pehr E. Pehrsson, Martin C. Peckerar
  • Patent number: 6051152
    Abstract: Filamentous substrates are coated with diamond by a chemical vapor deposition process. The substrate may then be etched away to form a diamond filament, such as a diamond tube or a diamond fiber. In a preferred embodiment, the substrate is copper-coated graphite. The copper initially passivates the graphite, permitting diamond nucleation thereon. As deposition continues, the copper-coated graphite is etched away by the active hydrogen used in the deposition process. As a result a substrate-less diamond fiber is formed. Diamond-coated and diamond filaments are useful as reinforcement materials for composites, is filtration media in chemical and purification processes, in biomedical applications as probes and medicinal dispensers, and in such esoteric areas as chaff media for jamming RF frequencies.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul M. Natishan, Arthur M. Morrish, Alan S. Edelstein, Richard K. Everett, Pehr E. Pehrsson
  • Patent number: 5891575
    Abstract: A process for making diamond and diamond products includes the steps of implanting ions in a diamond substrate to form a damaged layer of non-diamond carbon below the top surface of the substrate, heating the substrate to about 600-1200.degree. C., growing diamond on the top surface of the heated substrate by chemical vapor deposition, and electrochemically etching the damaged layer to separate the grown diamond from the substrate along the damage layer. The diamond product consists of a first diamond layer and a second diamond layer attached to the first layer. The second layer contains damage caused by ions traversing the second layer.
    Type: Grant
    Filed: February 22, 1996
    Date of Patent: April 6, 1999
    Assignee: United States as represented by the Secretary of the Navy
    Inventors: Michael J. Marchywka, Pehr E. Pehrsson
  • Patent number: 5702586
    Abstract: Process of smoothing or polishing a diamond surface to reduce asperities reon to a level as low as about 20 nm from the horizontal by implanting the diamond surface with ions to form a non-diamond carbon damage layer on or below the diamond surface below the disparity depth and dissolving the non-diamond carbon by submerging the non-diamond carbon in a liquid having sufficient electric field to dissolve the non-diamond carbon.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: December 30, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Pehr E. Pehrsson, Michael L. Marchywka
  • Patent number: 5587210
    Abstract: A process for making diamond and diamond products includes the steps of ianting ions in a diamond substrate to form a damaged layer of non-diamond carbon below the top surface of the substrate, heating the substrate to about 600-1200.degree. C. growing diamond on the top surface of the heated substrate by chemical vapor deposition, and electrochemically etching the damaged layer to separate the grown diamond from the substrate along the damage layer. The diamond product consists of a first diamond layer and a second diamond layer attached to the first layer. The second layer contains damage caused by ions traversing the second layer.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: December 24, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael J. Marchywka, Pehr E. Pehrsson
  • Patent number: 5374414
    Abstract: Filamentous substrates are coated with diamond by a chemical vapor deposin process. The substrate may then be etched away to form a diamond filament. In a preferred embodiment, the substrate is copper-coated graphite. The copper initially passivates the graphite, permitting diamond nucleation thereon. As deposition continues, the copper-coated graphite is etched away by the active hydrogen used in the deposition process. As a result a substrateless diamond tubule is formed. Diamond-coated and diamond filaments are useful as reinforcement materials for composites, as filtration media in chemical and purification processes, in biomedical applications as probes and medicinal dispensers, and in such esoteric areas as chaff media for jamming RF frequencies.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: December 20, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Arthur A. Morrish, Paul M. Natishan, Benji Maruyama, Pehr E. Pehrsson
  • Patent number: 5171608
    Abstract: Method for improved photolithography using a laser induced metallization cess to produce a metal mask wherein a work piece surface is treated to have a predetermined pattern of at least two materials each having different electron band gaps, the treated work piece is positioned in a metallizing solution, and the workpiece is exposed to a laser beam having a wavelength corresponding to the electron gap of a selected one of the materials. The method can advantageously be used to produce ohmic contacts for microcircuit devices.
    Type: Grant
    Filed: September 28, 1990
    Date of Patent: December 15, 1992
    Assignee: The Unites States of America as represented by the Secretary of the Navy
    Inventors: Richard F. Greene, Joseph Zahavi, Pehr E. Pehrsson, Christie R. Marrian