Patents by Inventor Pei-Chen Yu

Pei-Chen Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9810947
    Abstract: The invention provides a liquid crystal based optoelectronic device, including an upper substrate and a lower substrate, a liquid crystal layer sandwiched between the upper substrate and the lower substrate, and a pair of indium tin oxide nano-whisker layers formed on the inner surfaces of the upper substrate and the lower substrate, wherein the indium tin oxide nano-whisker layer is used as an alignment layer for aligning liquid crystal molecules in the liquid crystal layer.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: November 7, 2017
    Assignee: National Tsing Hua University
    Inventors: Ci-Ling Pan, Chan-Shan Yang, Tsung-Ta Tang, Ru-Pin Pan, Pei-Chen Yu
  • Patent number: 9748482
    Abstract: A semiconductor sensing device that includes a nanowire conductive layer, a semiconductor sensing layer, and a conductive layer is provided. The nanowire conductive layer includes a plurality of connected conductive nanowires, and gaps are formed between the conductive nanowires. The semiconductor sensing layer is electrically connected to the nanowire conductive layer. The conductive layer is electrically connected to the semiconductor sensing layer. The semiconductor sensing layer is located between the nanowire conductive layer and the conductive layer. A manufacturing method of a semiconductor sensing device is also provided.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: August 29, 2017
    Assignee: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Pei-Chen Yu, Ming-Yen Chuang, Chia-Chun Yeh
  • Patent number: 9236492
    Abstract: An active device provided by the invention is disposed on a substrate and includes a gate, a gate insulating layer, an oxide semiconductor channel layer, a plurality of nano conductive wires, a source and a drain. The gate insulating layer is disposed between the gate and the oxide semiconductor channel layer. The nano conductive wires are distributed in the oxide semiconductor channel layer, in which the nano conductive wires do not contact the gate insulating layer and the nano conductive wires are arranged along a direction and not intersected with each other. The source and the drain are disposed on two sides opposite to each other of the oxide semiconductor channel layer, in which a portion of the oxide semiconductor channel layer is exposed between the source and the drain.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: January 12, 2016
    Assignee: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Pei-Chen Yu, Hung-Chuan Liu, Bing-Shu Wu, Yi-Chun Lai, Wei-Tsung Chen
  • Publication number: 20150253627
    Abstract: The invention provides a liquid crystal based optoelectronic device, including an upper substrate and a lower substrate, a liquid crystal layer sandwiched between the upper substrate and the lower substrate, and a pair of indium tin oxide nano-whisker layers formed on the inner surfaces of the upper substrate and the lower substrate, wherein the indium tin oxide nano-whisker layer is used as an alignment layer for aligning liquid crystal molecules in the liquid crystal layer.
    Type: Application
    Filed: January 21, 2015
    Publication date: September 10, 2015
    Inventors: Ci-Ling PAN, Chan-Shan YANG, Tsung-Ta TANG, Ru-Pin PAN, Pei-Chen YU
  • Publication number: 20150233851
    Abstract: A semiconductor sensing device that includes a nanowire conductive layer, a semiconductor sensing layer, and a conductive layer is provided. The nanowire conductive layer includes a plurality of connected conductive nanowires, and gaps are formed between the conductive nanowires. The semiconductor sensing layer is electrically connected to the nanowire conductive layer. The conductive layer is electrically connected to the semiconductor sensing layer. The semiconductor sensing layer is located between the nanowire conductive layer and the conductive layer. A manufacturing method of a semiconductor sensing device is also provided.
    Type: Application
    Filed: December 9, 2014
    Publication date: August 20, 2015
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Pei-Chen Yu, Ming-Yen Chuang, Chia-Chun Yeh
  • Publication number: 20140326989
    Abstract: An active device provided by the invention is disposed on a substrate and includes a gate, a gate insulating layer, an oxide semiconductor channel layer, a plurality of nano conductive wires, a source and a drain. The gate insulating layer is disposed between the gate and the oxide semiconductor channel layer. The nano conductive wires are distributed in the oxide semiconductor channel layer, in which the nano conductive wires do not contact the gate insulating layer and the nano conductive wires are arranged along a direction and not intersected with each other. The source and the drain are disposed on two sides opposite to each other of the oxide semiconductor channel layer, in which a portion of the oxide semiconductor channel layer is exposed between the source and the drain.
    Type: Application
    Filed: January 23, 2014
    Publication date: November 6, 2014
    Applicant: E Ink Holdings Inc.
    Inventors: Hsiao-Wen Zan, Chuang-Chuang Tsai, Pei-Chen Yu, Hung-Chuan Liu, Bing-Shu Wu, Yi-Chun Lai, Wei-Tsung Chen
  • Publication number: 20110277839
    Abstract: An anti-reflection coating (ARC) stacked structure including a first ARC layer and a second ARC layer is provided. The first ARC layer is a continuous layer and the second ARC layer, located over the first ARC layer, is formed in fractals. In addition, a solar cell including the ARC stacked structure is further provided.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Lun Chang, Wen-Ching Sun, Chung-Wen Lan, Pei-Chen Yu, Chia-Hua Chang
  • Patent number: 7998539
    Abstract: A method of forming thin-film structure by oblique-angle deposition is provided. The method includes the steps of: evaporating target source in a chamber by an electron beam evaporation system, and introducing process gas into the chamber and adjusting tilt angle of the evaporation substrate and controlling temperature in the chamber during evaporation to form thin-film on a evaporation substrate by oblique-angle deposition, and then annealing the evaporation substrate to form a thin-film having porous nanorod microstructure.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: August 16, 2011
    Assignee: National Chiao Tung University
    Inventors: Chia-Hua Chang, Chin-Sheng Yang, Ching-Hua Chiu, Pei-Chen Yu, Hao-Chung Kuo
  • Publication number: 20100307592
    Abstract: A three-dimensional ITO electrode and the method of fabricating the same are disclosed. The three-dimensional ITO electrode of the present invention has a conductive layer and a plurality of ITO nanorods formed on the conductive layer, wherein the length range of the ITO nanorods can vary from 10 nm to 1500 nm. The best length is about 50 nm-200 nm for organic solar cells. When applied into organic optoelectronic devices such as organic solar cells and organic light-emitting diodes (OLEDs), the three-dimensional structure of the ITO electrode may increase the contact area to the active layer, thus improving the electric current collecting efficiency and uniformity of current spreading (flowing). Also, an evaporator, a solar cell comprising the above three-dimensional ITO electrode, and the method of fabricating the solar cell are disclosed.
    Type: Application
    Filed: September 21, 2009
    Publication date: December 9, 2010
    Applicant: National Chiao Tung University
    Inventors: Chia-Hua Chang, Pei-Chen Yu, Min-Hsiang Hsu, Kung-Hwa Wei, Ming-Shin Su
  • Publication number: 20100261001
    Abstract: The present invention discloses a transparent conductive nanostructured thin-film by oblique-angle deposition and method of the same. An electron beam system is utilized to evaporate the target source. Evaporation substrate is disposed on a plurality of adjustable sample stage. Multiple gas control valve and heat source is provided to control the gas flow and temperature within the process chamber. An annealing process is performed after the evaporation to improve the thin-film structure and optoelectronic properties.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: National Chiao Tung University
    Inventors: Chia-Hua Chang, Chin-Sheng Yang, Ching-Hua Chiu, Pei-Chen Yu, Hao-Chung Kuo
  • Publication number: 20100040859
    Abstract: The present invention discloses a transparent conductive nanostructured thin-film by oblique-angle deposition and method of the same. An electron beam system is utilized to evaporate the target source. Evaporation substrate is disposed on a plurality of adjustable sample stage. Multiple gas control valve and heat source is provided to control the gas flow and temperature within the process chamber. An annealing process is performed after the evaporation to improve the thin-film structure and optoelectronic properties.
    Type: Application
    Filed: November 5, 2008
    Publication date: February 18, 2010
    Applicant: National Chiao Tung University
    Inventors: Chia-Hua Chang, Chin-Sheng Yang, Ching-Hua Chiu, Pei-Chen Yu, Hao-Chung Kuo
  • Publication number: 20090081855
    Abstract: A fabrication method of a polysilicon layer is provided. First, a substrate is provided. Then, an amorphous silicon layer is formed on the substrate. After that, a patterned photomask having a light transmitting area and a light shielding area is provided, and the amorphous silicon layer is irradiated with a light by using the patterned photomask as a mask, wherein the amorphous silicon layer corresponding to the light transmitting area is transformed into a hydrophilic amorphous silicon layer, and the amorphous silicon layer corresponding to the light shielding area remains as a hydrophobic amorphous silicon layer. Next, a hydrophilic metal catalyst is provided and disposed on the hydrophilic amorphous silicon layer. After that, an annealing process is performed to transform the hydrophilic metal catalyst into a metal catalyst layer, and the metal catalyst layer reacts with the amorphous silicon layer to form a polysilicon layer.
    Type: Application
    Filed: March 24, 2008
    Publication date: March 26, 2009
    Applicant: CHUNGHWA PICTURE TUBES, LTD.
    Inventors: Yi-Yun Tsai, Shao-Yu Chiu, Chia-Hsuan Ma, Pei-Chen Yu