Patents by Inventor Pei Hsuan Lu
Pei Hsuan Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11362234Abstract: Local patterning and metallization of semiconductor structures using a laser beam, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a method of fabricating a solar cell includes providing a substrate having an intervening layer thereon. The method also includes locating a metal foil over the intervening layer. The method also includes exposing the metal foil to a laser beam, wherein exposing the metal foil to the laser beam forms openings in the intervening layer and forms a plurality of conductive contact structures electrically connected to portions of the substrate exposed by the openings.Type: GrantFiled: April 5, 2019Date of Patent: June 14, 2022Assignee: SunPower CorporationInventors: Pei Hsuan Lu, Benjamin I. Hsia, Taeseok Kim
-
Publication number: 20220158001Abstract: A method for fabricating a solar cell and the and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. The method can include: providing a solar cell having metal foil having first regions that are electrically connected to semiconductor regions on a substrate at a plurality of conductive contact structures, and second regions; locating a carrier sheet over the second regions; bonding the carrier sheet to the second regions; and removing the carrier sheet from the substrate to selectively remove the second regions of the metal foil.Type: ApplicationFiled: January 31, 2022Publication date: May 19, 2022Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Boris Bastien
-
Patent number: 11276785Abstract: A method for fabricating a solar cell and the and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. The method can include: providing a solar cell having metal foil having first regions that are electrically connected to semiconductor regions on a substrate at a plurality of conductive contact structures, and second regions; locating a carrier sheet over the second regions; bonding the carrier sheet to the second regions; and removing the carrier sheet from the substrate to selectively remove the second regions of the metal foil.Type: GrantFiled: April 5, 2019Date of Patent: March 15, 2022Assignee: SunPower CorporationInventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Boris Bastien
-
Publication number: 20210408313Abstract: Strings of solar cells having laser assisted metallization conductive contact structures, and their methods of manufacture, are described. For example, a solar cell string includes a first solar cell having a front side and a back side, and one or more laser assisted metallization conductive contact structures electrically connecting a first metal foil to the back side of the first solar cell. The solar cell string also includes a second solar cell having a front side and a back side, and one or more laser assisted metallization conductive contact structures electrically connecting a second metal foil to the back side of the second solar cell. The solar cell string also includes a conductive interconnect coupling the first and second solar cells, the conductive interconnect including a strain relief feature.Type: ApplicationFiled: June 23, 2021Publication date: December 30, 2021Inventors: Pei Hsuan Lu, Tyler D. Newman, Paul W. Loscutoff, George G. Correos, Yafu Lin, Andrea R. Bowring, David C. Okawa, Matthew T. Matsumoto, Benjamin I. Hsia, Arbaz Ahmed Shakir, John H. Lippiatt, Simone I. Nazareth, Ryan Reagan, Todd R. Johnson, Ned Western, Tamir Lance, Marc Robinson
-
Publication number: 20210203644Abstract: A data anonymity method and a data anonymity system are provided. The data anonymity method includes the following steps. A data set comprising a plurality of direct-identifiers, a plurality of quasi-identifiers and a plurality of event logs each of which includes an activity and a timestamp is obtained. A content of each of the direct-identifiers is replaced by a pseudonym. The quasi-identifiers are classified, via a group-by algorithm with k-anonymity, as a plurality of equivalence classes. The activities corresponding to each of the direct-identifiers are linked according to the timestamps to obtain a plurality of event sequences. A similarity hierarchy tree is obtained according to a plurality of edit distances among the event sequences. The event sequences are grouped according to the similarity hierarchy tree with k-anonymity to obtain at least one group. The event sequences which are in the group are generalized.Type: ApplicationFiled: December 30, 2019Publication date: July 1, 2021Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Ming-Chih KAO, Yu-Hsuan PAN, Pin-Hui LU, Pei-Hsuan LU, Pang-Chieh WANG, Kai-Cheng LIU
-
Publication number: 20190312157Abstract: A method for fabricating a solar cell and the and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. The method can include: providing a solar cell having metal foil having first regions that are electrically connected to semiconductor regions on a substrate at a plurality of conductive contact structures, and second regions; locating a carrier sheet over the second regions; bonding the carrier sheet to the second regions; and removing the carrier sheet from the substrate to selectively remove the second regions of the metal foil.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Boris Bastien
-
Publication number: 20190312163Abstract: Metallization of semiconductor substrates using a laser beam, and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, solar cell circuit, solar cell strings, and solar cell arrays are described. A solar cell string can include a plurality of solar cells. The plurality of solar cells can include a substrate and a plurality of semiconductor regions disposed in or above the substrate. A plurality of conductive contact structures is electrically connected to the plurality semiconductor regions. Each conductive contact structure includes a locally deposited metal portion disposed in contact with a corresponding one of the semiconductor regions.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Marc Robinson, Paul W. Loscutoff, Ryan Reagan, David Okawa, Tamir Lance, Thierry Nguyen
-
Publication number: 20190312156Abstract: Local metallization of semiconductor substrates using a laser beam, and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a solar cell includes a substrate and a plurality of semiconductor regions disposed in or above the substrate. A plurality of conductive contact structures is electrically connected to the plurality of semiconductor regions. Each conductive contact structure includes a locally deposited metal portion disposed in contact with a corresponding a semiconductor region.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron R. Barkhouse, Lee Gorny
-
Publication number: 20190308270Abstract: A system for fabricating solar cells. The system including one or more of: a laser assisted metallization patterning unit adapted to expose a metal foil located over a substrate to a laser beam to form a conductive contact structure comprising a locally deposited metal on the substrate; a debris removal unit adapted to remove debris from a top surface of a metal foil that is attached to a top surface of a substrate; a carrier attachment unit adapted to attach a carrier to one the top surface of the metal foil; and a metal removal unit adapted to remove the carrier and at least a portion of the metal foil.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, George G. Correos
-
Publication number: 20190312166Abstract: A method of fabricating solar cell, solar laminate and/or solar module string is provided. The method may include: locating a metal foil over a plurality of semiconductor substrates; exposing the metal foil to laser beam over selected portions of the plurality of semiconductor substrates, wherein exposing the metal foil to the laser beam forms a plurality conductive contact structures having of locally deposited metal portion electrically connecting the metal foil to the semiconductor substrates at the selected portions; and selectively removing portions of the metal foil, wherein remaining portions of the metal foil extend between at least two of the plurality of semiconductor substrates.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, David C. Okawa, David F. Kavulak, Lewis C. Abra, George G. Correos, Richard Hamilton Sewell, Ryan Reagan, Tamir Lance, Thierry Nguyen
-
Publication number: 20190312173Abstract: Local patterning and metallization of semiconductor structures using a laser beam, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a method of fabricating a solar cell includes providing a substrate having an intervening layer thereon. The method also includes locating a metal foil over the intervening layer. The method also includes exposing the metal foil to a laser beam, wherein exposing the metal foil to the laser beam forms openings in the intervening layer and forms a plurality of conductive contact structures electrically connected to portions of the substrate exposed by the openings.Type: ApplicationFiled: April 5, 2019Publication date: October 10, 2019Inventors: Pei Hsuan Lu, Benjamin I. Hsia, Taeseok Kim
-
Patent number: 9947821Abstract: A silicon device, has a plurality of crystalline silicon regions. One crystalline silicon region is a doped crystalline silicon region. Deactivating some or all of the dopant atoms in the doped crystalline silicon region is achieved by introducing hydrogen atoms into the doped 5 crystalline silicon region, whereby the hydrogen coulombicly bonds with some or all of the dopant atoms to deactivate the respective dopant atoms. Deactivated dopant atoms may be reactivated by heating and illuminating the doped crystalline silicon region to break at least some of the dopant-hydrogen bonds while maintaining conditions to create a high concentration of neutral hydrogen atoms whereby 10 some of the hydrogen atoms diffuse from the doped crystalline silicon region without rebinding to the dopant atoms.Type: GrantFiled: July 24, 2014Date of Patent: April 17, 2018Assignee: Newsouth Innovations PTY LimitedInventors: Brett Jason Hallam, Matthew Bruce Edwards, Stuart Ross Wenham, Phillip George Hamer, Catherine Emily Chan, Chee Mun Chong, Pei Hsuan Lu, Ly Mai, Li Hui Song, Adeline Sugianto, Alison Maree Wenham, Guang Qi Xu
-
Patent number: 9847443Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.Type: GrantFiled: July 7, 2016Date of Patent: December 19, 2017Assignee: NEWSOUTH INNOVATIONS PTY LIMITEDInventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
-
Patent number: 9824897Abstract: A method is provided for the processing of a device having a crystalline silicon region containing an internal hydrogen source. The method comprises: i) applying encapsulating material to each of the front and rear surfaces of the device to form a lamination; ii) applying pressure to the lamination and heating the lamination to bond the encapsulating material to the device; and iii) cooling the device, where the heating step or cooling step or both are completed under illumination.Type: GrantFiled: July 24, 2014Date of Patent: November 21, 2017Assignee: NEWSOUTH INNOVATIONS PTY LIMITEDInventors: Brett Jason Hallam, Matthew Bruce Edwards, Stuart Ross Wenham, Phillip George Hamer, Catherine Emily Chan, Chee Mun Chong, Pei Hsuan Lu, Ly Mai, Li Hui Song, Adeline Sugianto, Alison Maree Wenham, Guang Qi Xu
-
Publication number: 20160372625Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.Type: ApplicationFiled: July 7, 2016Publication date: December 22, 2016Inventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
-
Patent number: 9412897Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) providing one or more hydrogen sources accessible by each surface of the device; and iii) heating the device, or a local region of the device to at least 40° C.Type: GrantFiled: December 4, 2014Date of Patent: August 9, 2016Assignee: NEWSOUTH INNOVATIONS PTY LIMITEDInventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards
-
Publication number: 20160225930Abstract: A silicon device, has a plurality of crystalline silicon regions. One crystalline silicon region is a doped crystalline silicon region. Deactivating some or all of the dopant atoms in the doped crystalline silicon region is achieved by introducing hydrogen atoms into the doped 5 crystalline silicon region, whereby the hydrogen coulombicly bonds with some or all of the dopant atoms to deactivate the respective dopant atoms. Deactivated dopant atoms may be reactivated by heating and illuminating the doped crystalline silicon region to break at least some of the dopant-hydrogen bonds while maintaining conditions to create a high concentration of neutral hydrogen atoms whereby 10 some of the hydrogen atoms diffuse from the doped crystalline silicon region without rebinding to the dopant atoms.Type: ApplicationFiled: July 24, 2014Publication date: August 4, 2016Inventors: Brett Jason HALLAM, Matthew Bruce EDWARDS, Stuart Ross WENHAM, Phillip George HAMER, Catherine Emily CHAN, Chee Mun CHONG, Pei Hsuan LU, Ly MAI, Li Hui SONG, Adeline SUGIANTO, Alison Maree WENHAM, Guang Qi XU
-
Patent number: 9373731Abstract: A dielectric, structure and a method of forming a dielectric structure for a rear surface of a silicon solar cell are provided. The method comprises forming a first dielectric layer over the rear surface of the silicon solar cell, and then depositing a layer of metal such as aluminum over the first dielectric layer. The metal layer is then anodized to form a porous layer and a material layer is deposited over a surface of the porous layer such that the material deposits on the surface of the porous layer without contacting the silicon surface.Type: GrantFiled: June 28, 2012Date of Patent: June 21, 2016Assignee: NEWSOUTH INNOVATIONS PTY LIMITEDInventors: Alison Joan Lennon, Zhongtian Li, Stuart Ross Wenham, Pei Hsuan Lu
-
Publication number: 20160172213Abstract: A method is provided for the processing of a device having a crystalline silicon region containing an internal hydrogen source. The method comprises: i) applying encapsulating material to each of the front and rear surfaces of the device to form a lamination; ii) applying pressure to the lamination and heating the lamination to bond the encapsulating material to the device; and iii) cooling the device, where the heating step or cooling step or both are completed under illumination.Type: ApplicationFiled: July 24, 2015Publication date: June 16, 2016Inventors: Brett Jason HALLAM, Matthew Bruce EDWARDS, Stuart Ross WENHAM, Ohillip George HAMER, Catherine Emily CHAN, Chee Mun CHONG, Pei Hsuan LU, Ly MAI, Li Hui SONG, Adeline SUGIANTO, Alison Maree MENHAM, Guang Qi XU
-
Patent number: 9190556Abstract: A method of hydrogenation of a silicon photovoltaic junction device is provided, the silicon photovoltaic junction device comprising p-type silicon semiconductor material and n-type silicon semiconductor material forming at least one p-n junction. The method comprises: i) ensuring that any silicon surface phosphorus diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1020 atoms/cm3 or less and silicon surface boron diffused layers through which hydrogen must diffuse have peak doping concentrations of 1×1019 atoms/cm3 or less; ii) Providing one or more hydrogen sources accessible by each surface of the device; and iii) Heating the device, or a local region of the device to at least 40° C.Type: GrantFiled: May 20, 2013Date of Patent: November 17, 2015Assignee: NewSouth Innovations Pty LimitedInventors: Stuart Ross Wenham, Phillip George Hamer, Brett Jason Hallam, Adeline Sugianto, Catherine Emily Chan, Lihui Song, Pei Hsuan Lu, Alison Maree Wenham, Ly Mai, Chee Mun Chong, GuangQi Xu, Matthew Edwards