Patents by Inventor Peifu Cheng

Peifu Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11602743
    Abstract: A method of fabricating a carbon nanotube (“CNT”) array includes providing a substrate with a CNT catalyst disposed on a surface of the substrate, heating the CNT catalyst to an annealing temperature, exposing the CNT catalyst to a CNT precursor for an exposure period to pre-load the CNT catalyst, and exposing the pre-loaded CNT catalyst to a carbon source for a growth period to form the CNT array. The formed CNT array comprises a plurality of CNT bundles that are aligned with one another in an alignment direction. At least one of the plurality of bundles comprises an average structural factor of 1.5 or less along an entirety of the length thereof.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 14, 2023
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Vanderbilt University
    Inventors: Yuyang Song, Shailesh N. Joshi, Piran R. Kidambi, Peifu Cheng
  • Publication number: 20230050690
    Abstract: Disclosed herein are nanoporous membranes for separating a target substance from a non-target substance in a fluid medium and methods of making and use thereof. The nanoporous membranes comprise a 2D material permeated by a first and second population of pores; wherein the average pore diameter of the first population of pores is greater than or equal to the van der Waals diameter of water and less than the average size of the non-target substance in the fluid medium; wherein the average pore diameter of the second population of pores is greater than or equal to the average size of the non-target substance in the fluid medium; and wherein substantially all of the second population of pores are substantially blocked by a polymer via size-selective interfacial polymerization; such that the nanoporous membrane allows for transport of the target substance through the nanoporous membrane via the first population of pores.
    Type: Application
    Filed: December 18, 2020
    Publication date: February 16, 2023
    Inventors: Piran R. Kidambi, Peifu Cheng
  • Publication number: 20220314211
    Abstract: A method of fabricating a carbon nanotube (“CNT”) array includes providing a substrate with a CNT catalyst disposed on a surface of the substrate, heating the CNT catalyst to an annealing temperature, exposing the CNT catalyst to a CNT precursor for an exposure period to pre-load the CNT catalyst, and exposing the pre-loaded CNT catalyst to a carbon source for a growth period to form the CNT array. The formed CNT array comprises a plurality of CNT bundles that are aligned with one another in an alignment direction. At least one of the plurality of bundles comprises an average structural factor of 1.5 or less along an entirety of the length thereof.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Vanderbilt University
    Inventors: Yuyang Song, Shailesh N. Joshi, Piran R. Kidambi, Peifu Cheng
  • Patent number: 11094881
    Abstract: Perovskite films are known to be useful in many different technologies, including solar panels and memristors. Most perovskites contain lead which is undesirable for many reasons. It has been found that bismuth can be used in place of lead in preparing perovskite thin films. Additionally, when chemical vapor deposition is used to prepare the films instead of traditional solution phase methods, the films show greatly improved performance in electronic applications. Additionally, the present disclosure is directed to the use of perovskites in memory devices.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 17, 2021
    Assignee: Washington University
    Inventors: Parag Banerjee, Peifu Cheng, Xiao Chen, Yoon Myung
  • Publication number: 20190074439
    Abstract: Perovskite films are known to be useful in many different technologies, including solar panels and memristors. Most perovskites contain lead which is undesirable for many reasons. It has been found that bismuth can be used in place of lead in preparing perovskite thin films. Additionally, when chemical vapor deposition is used to prepare the films instead of traditional solution phase methods, the films show greatly improved performance in electronic applications. Additionally, the present disclosure is directed to the use of perovskites in memory devices.
    Type: Application
    Filed: August 24, 2018
    Publication date: March 7, 2019
    Applicant: Washington University
    Inventors: Parag Banerjee, Peifu Cheng, Xiao Chen, Yoon Myung