Patents by Inventor Peili Chen

Peili Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885681
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 30, 2024
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 11717167
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: August 8, 2023
    Assignees: Pendar Technologies, LLC, Children's Medical Center Corporation
    Inventors: John P. Romfh, Daryoosh Vakhshoori, John N. Kheir, Peili Chen, Brian Polizzotti, Joshua Salvin, Alison Perry
  • Publication number: 20230109459
    Abstract: The present technology includes a system and method for monitoring a donor organ tissue using Raman spectroscopy. The technology enables real-time quantification of the mitochondrial redox state in the tissue sample taken from an organ intended for transplant using a compact device. The system is based on resonance Raman spectroscopy which can quantify a mitochondrial redox state in tissues using a Resonance Raman Reduced Mitochondrial Ratio. The mitochondrial redox state of the tissue sample acts as a marker of tissue function and may distinguish healthy versus damaged tissue. Moreover, these measures may correlate with transplantation outcomes.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Applicants: Pendar Technologies, LLC, The General Hospital Corporation
    Inventors: John P. ROMFH, Daryoosh VAKHSHOORI, Peili CHEN, Shannon Tessier, Reinier De Vries, Stephanie Cronin
  • Publication number: 20220333985
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 20, 2022
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Patent number: 11300448
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 12, 2022
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20210223100
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 22, 2021
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Patent number: 10921187
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 16, 2021
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20200281474
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 10, 2020
    Inventors: John P. ROMFH, Daryoosh VAKHSHOORI, John N. KHEIR, Peili CHEN, Brian POLIZZOTTI, Joshua SALVIN, Alison PERRY
  • Patent number: 10527495
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: January 7, 2020
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20190368927
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Publication number: 20190368938
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain BLANCHARD, Peili CHEN, Masud AZIMI, Tobias MANSURIPUR, Kalyani KRISHNAMURTHY, Arran M. BIBBY, Fred R. HUETTIG, III, Gokhan ULU, Greg Vander Rhodes
  • Publication number: 20190368937
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh VAKHSHOORI, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Publication number: 20190368939
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Application
    Filed: March 12, 2019
    Publication date: December 5, 2019
    Applicant: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 10488260
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 26, 2019
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 10488252
    Abstract: A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 26, 2019
    Assignee: Pendar Technologies, LLC
    Inventors: Daryoosh Vakhshoori, Romain Blanchard, Peili Chen, Masud Azimi, Tobias Mansuripur, Kalyani Krishnamurthy, Arran M. Bibby, Fred R. Huettig, III, Gokhan Ulu, Greg Vander Rhodes
  • Patent number: 8248588
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 21, 2012
    Assignee: Thermo Scientific Portable Analytical Instruments Inc.
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Publication number: 20120092658
    Abstract: We disclose an apparatus comprising: a hand-portable optical analysis unit including an optical interface; and a device configured to receive and releasably engage the hand-portable optical analysis unit. The device comprises: a housing; a sample unit in the housing; and a resilient member configured to bias the sample unit and the hand-portable analysis unit towards each other when the hand-portable optical analysis unit is received in the device to compress a sample disposed between the sample unit and the optical interface of the optical analysis unit. Methods of analyzing samples are also disclosed.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 19, 2012
    Inventors: Masud AZIMI, Arran BIBBY, Christopher D. BROWN, Peili CHEN, Kevin J. KNOPP, Daryoosh VAKHSHOORI, Peidong WANG, Stephen MCLAUGHLIN
  • Publication number: 20110309247
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Application
    Filed: April 15, 2011
    Publication date: December 22, 2011
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Patent number: 8081305
    Abstract: We disclose an apparatus comprising: a hand-portable optical analysis unit including an optical interface; and a device configured to receive and releasably engage the hand-portable optical analysis unit. The device comprises: a housing; a sample unit in the housing; and a resilient member configured to bias the sample unit and the hand-portable analysis unit towards each other when the hand-portable optical analysis unit is received in the device to compress a sample disposed between the sample unit and the optical interface of the optical analysis unit. Methods of analyzing samples are also disclosed.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 20, 2011
    Assignee: Ahura Scientific Inc.
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang, Stephen McLaughlin
  • Patent number: 7928391
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: April 19, 2011
    Assignee: Ahura Scientific Inc.
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang