Patents by Inventor Peilin Yu

Peilin Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8283455
    Abstract: The present invention describes novel compounds and methods for capping reactive groups on support and during multistep synthesis. These new capping reagents are also useful for high quality synthesis on solid supports and surfaces used as microarrays, biosensors, or in general as biochips. The compounds are also useful for controlling surface density of reactive groups on a support. The compounds may also be used to modify the hydrophilic/hydrophobic characteristics of a surface or a molecule. The compounds have functional utility in various applications in the fields of genomics, proteomics, diagnostics and medicine.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 9, 2012
    Inventors: Xiaolian Gao, Peilin Yu
  • Publication number: 20120029166
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Applicant: THE REGENTS OF THE UNVERSITY OF MICHIGAN
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Publication number: 20110288285
    Abstract: The present invention describes novel compounds and methods for capping reactive groups on support and during multistep synthesis. These new capping reagents are also useful for high quality synthesis on solid supports and surfaces used as microarrays, biosensors, or in general as biochips. The compounds are also useful for controlling surface density of reactive groups on a support. The compounds may also be used to modify the hydrophilic/hydrophobic characteristics of a surface or a molecule. The compounds have functional utility in various applications in the fields of genomics, proteomics, diagnostics and medicine.
    Type: Application
    Filed: March 22, 2011
    Publication date: November 24, 2011
    Inventors: Xiaolian Gao, Peilin Yu
  • Patent number: 8053187
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 8, 2011
    Assignee: The Regents of the University of Michigan
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Publication number: 20110097762
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 28, 2011
    Applicant: THE REGENTS OF THE UNVERSITY OF MICHIGAN
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Patent number: 7923550
    Abstract: The present invention describes novel compounds and methods for capping reactive groups on support and during multistep synthesis. These new capping reagents are also useful for high quality synthesis on solid supports and surfaces used as microarrays, biosensors, or in general as biochips. The compounds are also useful for controlling surface density of reactive groups on a support. The compounds may also be used to modify the hydrophilic/hydrophobic characteristics of a surface or a molecule. The compounds have functional utility in various applications in the fields of genomics, proteomics, diagnostics and medicine.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: April 12, 2011
    Inventors: Xiaolian Gao, Peilin Yu
  • Patent number: 7807807
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: October 5, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Publication number: 20100210478
    Abstract: The present invention relates to quantitative and quantity aspects of array synthesis and array uses as a device for high capacity producing synthetic molecules for off-array surface applications and as an assay device for on-array surface applications.
    Type: Application
    Filed: June 29, 2007
    Publication date: August 19, 2010
    Inventors: Xiaolian Gao, Kiaochun Zhou, Xiaolin Zhang, Ailing Hong, Qi Zhu, Peilin Yu
  • Publication number: 20100093974
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Application
    Filed: June 29, 2009
    Publication date: April 15, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Patent number: 7553958
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: June 30, 2009
    Assignee: The Regents of the University of Michigan
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Publication number: 20080091005
    Abstract: Modified nucleotides are disclosed for use in single molecule sequencing, methods for making the modified nucleotides and method for using the modified nucleotides. Linkers for making the modified nucleotide are also disclosed.
    Type: Application
    Filed: July 20, 2007
    Publication date: April 17, 2008
    Applicants: VISIGEN BIOTECHNOLOGIES, INC., APPLIED BIOSYSTEMS
    Inventors: Hongyi Wang, Xiaolian Gao, Peilin Yu, Mitsu Reddy, Susan Hardin, Tommie Lincecum, Amy Williams, Norha Deluge, Yuri Belosludtsev, Steven Menchen, Joe Lam, Jer-Kang Chen
  • Publication number: 20070287832
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Application
    Filed: March 21, 2007
    Publication date: December 13, 2007
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Pellois, Qin Xiang, Xiaochuan Zhou
  • Patent number: 7211654
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: May 1, 2007
    Assignee: Regents of the University of Michigan
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou
  • Publication number: 20030120035
    Abstract: A method of modulation of synthesis capacity on and cleavage properties of synthetic oligomers from solid support is described. The method utilizes linker molecules attached to a solid surface and co-coupling agents that have similar reactivities to the coupling compounds with the surface functional groups. The preferred linker molecules provide an increased density of polymers and more resistance to cleavage from the support surface. The method is particularly useful for synthesis of oligonucleotides, oligonucleotides microarrays, peptides, and peptide microarrays. The stable linkers are also coupled to anchor molecules for synthesis of DNA oligonucleotides using on support purification, eliminating time-consuming chromatography and metal cation presence. Oligonucleotides thus obtained can be directly used for mass analysis, DNA amplification and ligation, hybridization, and many other applications.
    Type: Application
    Filed: March 13, 2002
    Publication date: June 26, 2003
    Applicant: The Regents Of The University Of Michigan
    Inventors: Xiaolian Gao, Hua Zhang, Peilin Yu, Eric Leproust, Jean Philippe Pellois, Qin Xiang, Xiaochuan Zhou