Patents by Inventor Peiming REN

Peiming REN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11410035
    Abstract: Disclosed is a real-time object detection method deployed on a platform with limited computing resources, which belongs to the field of deep learning and image processing. In the present invention, YOLO-v3-tiny neural network is improved, Tinier-YOLO reserves the front five convolutional layers and pooling layers of YOLO-v3-tiny and makes prediction at two different scales. Fire modules in SqueezeNet, 1×1 bottleneck layers, and dense connection are introduced, so that the structure is used to achieve smaller, faster, and more lightweight network that can be run in real time on an embedded AI platform. The model size of Tinier-YOLO in the present invention is only 7.9 MB, which is only ¼ of 34.9 MB of YOLO-v3-tiny, and ? of YOLO-v2-tiny. The reduction in the model size of Tinier-YOLO does not affect real-time performance and accuracy of Tinier-YOLO. Real-time performance of Tinier-YOLO in the present invention is 21.8% higher than that of YOLO-v3-tiny and 70.8% higher than that of YOLO-v2-tiny.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: August 9, 2022
    Assignee: Jiangnan University
    Inventors: Wei Fang, Peiming Ren, Lin Wang, Jun Sun, Xiaojun Wu
  • Publication number: 20200293891
    Abstract: Disclosed is a real-time object detection method deployed on a platform with limited computing resources, which belongs to the field of deep learning and image processing. In the present invention, YOLO-v3-tiny neural network is improved, Tinier-YOLO reserves the front five convolutional layers and pooling layers of YOLO-v3-tiny and makes prediction at two different scales. Fire modules in SqueezeNet, 1×1 bottleneck layers, and dense connection are introduced, so that the structure is used to achieve smaller, faster, and more lightweight network that can be run in real time on an embedded AI platform. The model size of Tinier-YOLO in the present invention is only 7.9 MB, which is only ¼ of 34.9 MB of YOLO-v3-tiny, and ? of YOLO-v2-tiny. The reduction in the model size of Tinier-YOLO does not affect real-time performance and accuracy of Tinier-YOLO. Real-time performance of Tinier-YOLO in the present invention is 21.8% higher than that of YOLO-v3-tiny and 70.8% higher than that of YOLO-v2-tiny.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Wei FANG, Peiming REN, Lin WANG, Jun SUN, Xiaojun WU