Patents by Inventor Peiyan CAO

Peiyan CAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210038177
    Abstract: Disclosed herein is an apparatus comprising an insertion tube; an image sensor inside the insertion tube; wherein the image sensor comprises an array of pixels; wherein the image sensor is configured to count numbers of particles of radiation incident on the pixels, within a period of time. Also disclosed herein is a method of using this apparatus.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210026025
    Abstract: Disclosed herein is a detector, comprising: a plurality of pixels; a first guard ring comprising a plurality of segments, wherein the detector is configured to detect charge carriers collected by the segments; a controller configured to detect charge sharing between at least one pixel of the plurality of pixels and at least one segment of the first guard ring.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 28, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210022700
    Abstract: Disclosed herein is a method comprising: obtaining a third image from a first X-ray detector when the first X-ray detector and a second X-ray detector are misaligned; determining, based on a shift between a first image and the third image, a misalignment between the first X-ray detector and the second X-ray detector when the first and second detectors are misaligned; wherein the first image is an image the first X-ray detector should capture if the first and the second detectors are aligned.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 28, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210026024
    Abstract: Disclosed herein is a method for making an apparatus suitable for detecting X-ray, the method comprising: obtaining a wafer and a substrate; wherein the substrate comprises an X-ray absorption layer comprising a first plurality of electrical contacts; wherein the wafer has multiple dies and comprises an electronic layer comprising a second plurality of electrical contacts and an electronic system configured to process or interpret signals generated by X-ray photons incident on the X-ray absorption layer; aligning the first plurality of electrical contacts to the second plurality of electrical contacts; mounting the wafer to the substrate such that the first plurality of electrical contacts are electrically connected to the second plurality of electrical contacts; wherein the substrate further comprises a transmission line electrically bridging at least some of the dies; wherein the second plurality of electrical contacts are configured to feed the signals to the electronic system.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 28, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210018634
    Abstract: A method of making an apparatus suitable for detecting X-ray is disclosed. In an example, the method includes: obtaining a semiconductor substrate with a first electrical contact on a first surface and a second electrical contact on a second surface opposite the first surface, the second electrical contact comprising a plurality of discrete portions; forming a plurality of trenches extending into at least 70% of a thickness of the semiconductor substrate, wherein the plurality of trenches encircle each of the discrete portions.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210013362
    Abstract: Disclosed herein is an apparatus and a method of making the apparatus. The method comprises obtaining a plurality of semiconductor single crystal chunks. Each of the plurality of semiconductor single crystal chunks may have a first surface and a second surface. The second surface may be opposite to the first surface. The method may further comprise bonding the plurality of semiconductor single crystal chunks by respective first surfaces to a first semiconductor wafer. The plurality of semiconductor single crystal chunks forming a radiation absorption layer. The method may further comprise forming a plurality of electrodes on respective second surfaces of each of the plurality of semiconductor single crystal chunks, depositing pillars on each of the plurality of semiconductor single crystal chunks and bonding the plurality of semiconductor single crystal chunks to a second semiconductor wafer by the pillars.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Publication number: 20210007685
    Abstract: Disclosed herein is an apparatus comprising: a radiation absorption layer comprising an electrode; a counter; a controller configured to cause a number registered by the counter to change, in response to an absolute value of an electrical signal on the electrode equaling or exceeding an absolute value of a second threshold during a time delay that is started from a time at which the absolute value of the electrical signal equals or exceeds an absolute value of a first threshold.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventor: Peiyan CAO
  • Publication number: 20210011182
    Abstract: Disclosed herein is a method, comprising: exposing an image sensor to a scene; measuring, as analog signals, intensities of light from the scene by a plurality of pixels of the image sensor; converting the analog signals to digital signals; and determining a total intensity of light of the scene by calculating a sum of the digital signals.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Peiyan CAO, Yurun LIU
  • Patent number: 10866330
    Abstract: Disclosed herein is a method for making an apparatus suitable for detecting X-ray, the method comprising: obtaining a wafer and a substrate; wherein the substrate comprises an X-ray absorption layer comprising a first plurality of electrical contacts; wherein the wafer has multiple dies and comprises an electronic layer comprising a second plurality of electrical contacts and an electronic system configured to process or interpret signals generated by X-ray photons incident on the X-ray absorption layer; aligning the first plurality of electrical contacts to the second plurality of electrical contacts; mounting the wafer to the substrate such that the first plurality of electrical contacts are electrically connected to the second plurality of electrical contacts; wherein the substrate further comprises a transmission line electrically bridging at least some of the dies; wherein the second plurality of electrical contacts are configured to feed the signals to the electronic system.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: December 15, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Publication number: 20200363539
    Abstract: Disclosed herein is a system comprising: a first X-ray detector in a first layer; a second X-ray detector in a second layer; wherein the first X-ray detector comprises a first X-ray absorption layer and a first electronics layer; wherein the second X-ray detector comprises a second X-ray absorption layer and a second electronics layer; wherein the first X-ray detector is mounted to a first surface of a first printed circuit board; wherein the second X-ray detector is mounted to a first surface of a second printed circuit board, or to a second surface of the first printed circuit board opposite to the first surface of the first printed circuit board; wherein gaps in the second X-ray absorption layer are shadowed by the first X-ray absorption layer.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Inventors: Peiyan CAO, Yurun LIU
  • Patent number: 10838086
    Abstract: Disclosed herein is a radiation detector, comprising: a radiation absorption layer configured to absorb a radiation; a plurality of counters each associated with a bin and configured to register a number of particles of the radiation particles absorbed by the detector; a memory comprising a plurality of units, which can be dynamically allocated to the counters.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: November 17, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Publication number: 20200357840
    Abstract: Disclosed herein is an apparatus comprising: an array of avalanche photodiodes (APDs), each of the APDs comprising an absorption region and an amplification region; wherein the absorption region is configured to generate charge carriers from a photon absorbed by the absorption region; wherein the absorption region comprises a silicon epitaxial layer; wherein the amplification region comprises a junction with an electric field in the junction; wherein the electric field is at a value sufficient to cause an avalanche of charge carriers entering the amplification region, but not sufficient to make the avalanche self-sustaining; wherein the junctions of the APDs are discrete.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10830913
    Abstract: An apparatus suitable for detecting X-ray is disclosed. In one example, the apparatus comprises an X-ray absorption layer comprising a pixel and a second pixel, and a layer of material or vacuum extending across a thickness of the X-ray absorption layer and encircling the pixel, wherein the layer of material is configured to prevent a charge carrier in the pixel from moving through the layer of material. In another example, the apparatus comprises an X-ray absorption layer comprising a plurality of columns of a semiconductor configured to absorb X-ray, and a layer of material or vacuum extending across a thickness of the X-ray absorption layer and encircling each of the columns, wherein the layer of material is configured to prevent transfer of a charge carrier between two of the columns.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: November 10, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10833217
    Abstract: Disclosed herein is an apparatus and a method of making the apparatus. The method comprises obtaining a plurality of semiconductor single crystal chunks. Each of the plurality of semiconductor single crystal chunks may have a first surface and a second surface. The second surface may be opposite to the first surface. The method may further comprise bonding the plurality of semiconductor single crystal chunks by respective first surfaces to a first semiconductor wafer. The plurality of semiconductor single crystal chunks forming a radiation absorption layer. The method may further comprise forming a plurality of electrodes on respective second surfaces of each of the plurality of semiconductor single crystal chunks, depositing pillars on each of the plurality of semiconductor single crystal chunks and bonding the plurality of semiconductor single crystal chunks to a second semiconductor wafer by the pillars.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: November 10, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10823862
    Abstract: Disclosed herein is a detector, comprising: a plurality of pixels, a plurality of segments of guard ring, and a controller, is configured to count numbers of X-ray photons that incident on each pixel of the plurality, and whose energy falls in a plurality of bins, within a period of time. The controller, is configured to detect charge sharing between pixels and segments of guard ring. With charge sharing detected, the controller is also configured to disregard one single photon. With no charge sharing detected, the controller is configured to add the numbers of X-ray photons that incident on the all pixels, for the bins of the same energy range. The detector may compile all the added numbers as an energy spectrum of the incident X-ray photons thereon.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10820882
    Abstract: Disclosed herein is a method comprising: obtaining a third image from a first X-ray detector when the first X-ray detector and a second X-ray detector are misaligned; determining, based on a shift between a first image and the third image, a misalignment between the first X-ray detector and the second X-ray detector when the first and second detectors are misaligned; wherein the first image is an image the first X-ray detector should capture if the first and the second detectors are aligned.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10823860
    Abstract: Disclosed herein is a system configured to cause an element in a sample to emit fluorescent X-ray, the system comprising a detector with a plurality of pixels, each pixel configured to count numbers of X-ray photons incident thereon whose energy falls in a plurality of bins of different energy ranges respectively, within a period of time; wherein the detector is configured to sum the numbers counted by all the pixels from only the bins of the same energy range; wherein the detector is configured to identify the element based on the summed numbers.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10823859
    Abstract: Disclosed herein is a method, comprising: exposing an image sensor to a scene; measuring, as analog signals, intensities of light from the scene by a plurality of pixels of the image sensor; converting the analog signals to digital signals; and determining a total intensity of light of the scene by calculating a sum of the digital signals.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 10820867
    Abstract: Disclosed herein is an apparatus comprising: a radiation absorption layer comprising an electrode; a counter configured to register a number of radiation particles absorbed by the radiation absorption layer; a controller configured to start a time delay from a time at which an absolute value of an electrical signal on the electrode equals or exceeds an absolute value of a first threshold; wherein the controller is configured to cause the number registered by the counter to change, in response to the absolute value of the electrical signal equaling or exceeding an absolute value of a second threshold during the time delay.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventor: Peiyan Cao
  • Publication number: 20200341157
    Abstract: Disclosed herein is a method for forming a radiation detector. The method comprises forming a radiation absorption layer and bonding an electronics layer to the radiation absorption layer. The electronics layer comprises an electronic system configured to process electrical signals generated in the radiation absorption layer upon absorbing radiation photons. The method for forming the radiation absorption layer comprises forming a trench into a first surface of a semiconductor substrate; doping a sidewall of the trench; forming a first electrical contact on the first surface; forming a second electrical contact on a second surface of the semiconductor substrate. The second surface is opposite the first surface. The method further comprises dicing the semiconductor substrate along the trench.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 29, 2020
    Inventors: Peiyan CAO, Yurun LIU