Patents by Inventor Peiyao Wang

Peiyao Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936446
    Abstract: The present disclosure relates to electronic device, method for wireless communication system and storage medium. The present disclosure proposes an electronic device on a control device side for a wireless communication system, comprising: a processing circuit configured to group a plurality of terminal devices of the wireless communication system into one linear precoding terminal device group and one or more nonlinear precoding terminal device groups based on respective nonlinear precoding capabilities and channel state information of the plurality of terminal devices; and notify each terminal device whether nonlinear precoding or linear precoding is to be employed in communication for the terminal device by means of a nonlinear precoding indicator based on the grouping.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 19, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Peiyao Zhao, Zhaocheng Wang, Jianfei Cao
  • Publication number: 20240061149
    Abstract: Optical compensation films based on polymer blends formed from particular compositions of a styrenic fluoropolymer and acrylic copolymers are provided. The optical compensation films have desirable mechanical and optical properties such as haze, elongation at break, Young's modulus, in-plane retardation, and out-of-plane retardation. The optical compensation films are suitable for use in display devices such as those in televisions, computers, automobiles, and mobile phones.
    Type: Application
    Filed: December 14, 2021
    Publication date: February 22, 2024
    Inventors: PEIYAO WANG, FRANK HARRIS, THAUMING KUO, WENTAO LI, ALAN PHILLIPS, BIN WANG, DONG ZHANG, XIAOLIANG ZHENG
  • Publication number: 20220252878
    Abstract: A multi-region imaging device (1000?, 2000) and method (9000?). The multi-region imaging device (1000?, 2000) comprises: a picture light projection plate (1100?, 2100?), wherein the picture light projection plate (1100?, 2100?) comprises a first region (1110?, 2110?) and a second region (1120?, 2120?) that do not overlap each other, the first region (1110?, 2110?) and the second region (1120?, 2120?) emit picture light for imaging; and an optical path compensation section (1200?, 2200?), wherein the optical path compensation section (1200?, 2200?) is arranged on a propagation path of the picture light emitted by the second region (1120?, 2120?), and the picture light emitted by the second region (1120?, 2120?) is transmitted by the optical path compensation section (1200?, 2200?) and optical path compensation is carried out thereon.
    Type: Application
    Filed: April 8, 2022
    Publication date: August 11, 2022
    Applicant: Ningbo Sunny Automotive Optech Co., Ltd.
    Inventors: Haitao LANG, Jia Yang, Zhichao Wang, Dingming Yang, Heteng Zhang, Peiyao Wang
  • Patent number: 10556973
    Abstract: Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 11, 2020
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Lang Hu, Liu Deng, Wentao Li, Robert Sharpe, Eduardo Cervo, Thauming Kuo, Bin Wang, Alan Phillips, Xiaoliang Zheng, Peiyao Wang, Dong Zhang, Frank Harris, Ted Germroth
  • Patent number: 10125250
    Abstract: Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 13, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Alan Phillips, Bin Wang, Peiyao Wang, Lang Hu, Wentao Li, Liu Deng, Thauming Kuo, Dong Zhang, Frank Harris, Ted Germroth
  • Patent number: 10126479
    Abstract: Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 13, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Bin Wang, Peiyao Wang, Dong Zhang, Thauming Kuo, Alan Phillips, Lang Hu, Xiaoliang Zheng, Wentao Li, Liu Deng, Frank Harris, Ted Germroth
  • Patent number: 10088615
    Abstract: A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: October 2, 2018
    Assignee: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Frank W. Harris, Thauming Kuo, Bin Wang, Ted Germroth, Dong Zhang, Douglas S. McWilliams, Peiyao Wang
  • Publication number: 20180072882
    Abstract: Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
    Type: Application
    Filed: August 11, 2017
    Publication date: March 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Alan Phillips, Bin Wang, Peiyao Wang, Lang Hu, Wentao Li, Liu Deng, Thauming Kuo, Dong Zhang, Frank Harris, Ted Germroth
  • Publication number: 20180052271
    Abstract: Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 22, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Bin Wang, Peiyao Wang, Dong Zhang, Thauming Kuo, Alan Phillips, Lang Hu, Xiaoliang Zheng, Wentao Li, Liu Deng, Frank Harris, Ted Germroth
  • Publication number: 20180044444
    Abstract: Disclosed are optical compensation films with exceptionally high positive out-of-plane birefringence. The optical compensation films are based on substituted styrenic fluoropolymers and have positive out-of-plane bireftingence greater than 0.02 throughout the wavelength range of 400 nm<?<800 nm. The optical compensation films of the invention are suitable for use in optical devices such as liquid crystal display (LCD) devices and organic light emitting diode (OLED) display devices.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Dong Zhang, Ted Germroth, Thauming Kuo, Xiaoliang Zheng, Chao Chen, Peiyao Wang, Lang Hu, Wentao Li, Alan Phillips, Frank Harris
  • Publication number: 20180044447
    Abstract: Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Lang Hu, Liu Deng, Wentao Li, Robert Sharpe, Eduardo Cervo, Thauming Kuo, Bin Wang, Alan Phillips, Xiaoliang Zheng, Peiyao Wang, Dong Zhang, Frank Harris, Ted Germroth
  • Publication number: 20160215132
    Abstract: A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 28, 2016
    Applicant: Akron Polymer Systems, Inc.
    Inventors: Xiaoliang Zheng, Frank W. Harris, Thauming Kuo, Bin Wang, Ted Germroth, Dong Zhang, Douglas S. McWilliams, Peiyao Wang