Patents by Inventor Peizheng Zhou

Peizheng Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6903141
    Abstract: A continuous process is disclosed for the production of hydrocarbon liquids and wax by Fischer-Tropsch conversion of synthesis gas in contact with promoted skeletal iron catalyst particles in a slurry reactor. Wax product is readily separated from the skeletal iron catalyst in a catalyst settling drum and concentrated catalyst particles in wax slurry are recycled from the settling drum to the slurry reactor, while essentially solid-free wax is recovered as a product.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 7, 2005
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Larry Abrams, Christine Marie Long, Lu Yijun
  • Patent number: 6777452
    Abstract: Promoted skeletal iron catalysts are provided which contain 70-90 wt % iron together with promoters 0-5.0 wt. % copper, 0.1-10.0 wt. % manganese, and 0.1-3.0 wt. % potassium, with the balance being aluminum. The catalysts are prepared by mixing the metal chips or powders uniformly together, then melting and rapidly quenching the molten metals to form a solid metal alloy precursor including the promotor metals except potassium, removing most of the aluminum by caustic extraction/leaching to provide a base skeletal iron form, then loading the potassium promoter from a suitable potassium alcohol solution promoter. After evaporation of the solvent, the promoted skeletal iron catalyst is activated by contact with hydrogen. The promoted skeletal iron catalysts are utilized for F-T synthesis processes at 10-30 wt % catalyst concentration, 200-350° C. temperature, 1.0-3.0 Mpa pressure and gas hourly space velocity of 0.5-5.0 L/gcat-h to produce desired hydrocarbon liquid products.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: August 17, 2004
    Assignees: Hydrocarbon Technologies, Institue of Coal Chemistry
    Inventors: Peizheng Zhou, Yijun Lu
  • Patent number: 6586480
    Abstract: Process and economic advantages are achieved by the integration of a Fischer Tropsch process for hydrocarbon liquids production as a retrofit in an installation for the production of ammonia fertilizer from fossil fuel derived syngas. Utilization of most of the CO and part of the H2 in the syngas stream during Fischer-Tropsch synthesis as the first step in the integrated process produces hydrocarbon products while the F-T effluent containing unreacted hydrogen gas at the necessary ratio of H2/N2 is used in the second step of ammonia synthesis. The overall product slate as appropriate for maximum economic performance of the installation is thus achieved.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: July 1, 2003
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Yijun Lu, Michael Rueter
  • Publication number: 20030109591
    Abstract: A continuous process is disclosed for the production of hydrocarbon liquids and wax by Fischer-Tropsch conversion of synthesis gas in contact with promoted skeletal iron catalyst particles in a slurry reactor. Wax product is readily separated from the skeletal iron catalyst in a catalyst settling drum and concentrated catalyst particles in wax slurry are recycled from the settling drum to the slurry reactor, while essentially solid-free wax is recovered as a product.
    Type: Application
    Filed: October 8, 2002
    Publication date: June 12, 2003
    Applicant: Hydrocarbon Technologies Inc.
    Inventors: Peizheng Zhou, Larry Abrams, Christine Marie Long, Lu Yijun
  • Patent number: 6476086
    Abstract: Fine iron-based catalyst particles from. Fischer-Tropsch (F-T) synthesis processes are effectively separated from catalyst/liquid/wax slurry by contacting and/or mixing the slurry with a coalescence enhancing treating solution to facilitate gravity separation and settling of such catalyst, and thereby yield a substantially clean hydrocarbon liquid/wax product. The treating solution includes a surface tension reducing agent, an agglutinating agent, and a coalescing agent each in selected proportions in aqueous solution. Useful mixing and settling conditions are 10-250° C. temperature, 0-500 psig pressure and treating solution to slurry volume ratio of 0.5-5:1, with the settling time for at least about 90% and preferably substantially all of the catalyst fines after the mixing step being less than about 15 minutes. The treating solution can be desirably recovered and reused in the F-T synthesis process, and the recovered catalyst either recycled or disposed as desired.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: November 5, 2002
    Assignee: Hydrocarbon Technologies, Inc.
    Inventor: Peizheng Zhou
  • Publication number: 20020156137
    Abstract: Promoted skeletal iron catalysts are provided which contain 70-90 wt % iron together with promoters 0-5.0 wt. % copper, 0.1-10.0 wt. % manganese, and 0.1-3.0 wt. % potassium, with the balance being aluminum. The catalysts are prepared by mixing the metal chips or powders uniformly together, then melting and rapidly quenching the molten metals to form a solid metal alloy precursor including the promotor metals except potassium, removing most of the aluminum by caustic extraction/leaching to provide a base skeletal iron form, then loading the potassium promoter from a suitable potassium alcohol solution promoter. After evaporation of the solvent, the promoted skeletal iron catalyst is activated by contact with hydrogen. The promoted skeletal iron catalysts are utilized for F-T synthesis processes at 10-30 wt % catalyst concentration, 200-350° C. temperature, 1.0-3.0 Mpa pressure and gas hourly space velocity of 0.5-5.0 L/gcat-h to produce desired hydrocarbon liquid products.
    Type: Application
    Filed: March 27, 2002
    Publication date: October 24, 2002
    Applicant: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Yijun Lu
  • Publication number: 20020052423
    Abstract: Particulate skeletal iron catalyst is provided which contain at least about 50 wt. % iron with the remainder being a minor portion of a suitable non-ferrous metal and having characteristics of 0.062-1.0 mm particle size (62-1000 micron), 20-100 m2/g surface area, and 10-40 nm average pore diameter. Such skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with non-ferrous metal powder selected from aluminum, antimony, silicon, tin or zinc powder to provide 20-80 wt. % initial iron content and melted together to form an iron alloy, then cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy precursor particles are treated with NaOH or KOH caustic solution at 30-95° C.
    Type: Application
    Filed: July 2, 2001
    Publication date: May 2, 2002
    Applicant: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Lap-Keung Lee, Jinglai Zhou, Yijun Lu, Guohui Li
  • Publication number: 20020010087
    Abstract: Skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with aluminum, antimony, silicon, tin or zinc powder and 0.01-5 wt. % metal promotor powder to provide 20-80 wt. % iron content, then melted together, cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy precursor particles are treated with NaOH or KOH caustic solution at 30-95° C. to extract or leach out a major portion of the non-ferrous metal portion from the iron and provide the skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream in either fixed bed or slurry bed type reactor at 200-350° C. temperature, 1.0-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L/g Fe/h to produce desired hydrocarbon products.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 24, 2002
    Inventors: Jinglai Zhou, Yijun Lu, Zhixin Zhang, Guohui Li, Linyao Dong, Hairong Wang, Peizheng Zhou, Lap-Keung Lee
  • Patent number: 6277895
    Abstract: Particulate skeletal iron catalyst is provided which contain at least about 50 wt. % iron with the remainder being a minor portion of a suitable non-ferrous metal and having characteristics of 0.062-1.0 mm particle size, 20-100 m2/g surface area, and 10-40 nm average pore diameter. Such skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with non-ferrous powder selected from aluminum, antimony, silicon, tin or zinc powder to provide 20-80 wt. % iron content and melted together to form an iron alloy, then cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy pulverized particles are treated with NaOH or KOH caustic solution at 30-95° C.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: August 21, 2001
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Peizheng Zhou, Lap-Keung Lee, Jinglai Zhou, Yijun Lu, Guohui Li
  • Patent number: 6265451
    Abstract: Skeletal iron catalysts are prepared and utilized for producing hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with aluminum, antimony, silicon, tin or zinc powder and 0.01-5 wt % metal promotor powder to provide 20-80 wt % iron content, then melted together, cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy precursor particles are treated with NaOH or KOH caustic solution at 30-95° C. to extract or leach out a major portion of the non-ferrous metal portion from the iron, and then dried and reduced under hydrogen atmosphere to provide the skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream in either fixed bed or slurry bed type reactor at 200-350° C. temperature, 1.0-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L/g Fe/h to produce desired hydrocarbon products.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: July 24, 2001
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Jinglai Zhou, Yijun Lu, Zhixin Zhang, Guohui Li, Linyao Dong, Hairong Wang, Peizheng Zhou, Lap-Keung Lee