Patents by Inventor Pekka Juha Soininen

Pekka Juha Soininen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150162104
    Abstract: System and method for producing thermal energy is based on a very large number of nanoscale particle accelerators in a volume accelerating electrons and hydrogen ions at very high local electric fields. Nanoscale particle accelerators comprise a dielectric material possessing electric polarizability and a metallic material capable of forming an interstitial and/or electrically conductive metal hydride and capable of enhancing the local electric field by the geometry and/or by the sufficiently small dimensions of the said metallic material. Low to medium strength local electric fields are utilized for the generation of Rydberg matter and inverted Rydberg matter in the presence of a material capable of forming and storing Rydberg atoms. Destabilization of Rydberg matter and inverted Rydberg matter leads to solid state physical reactions that release energy.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 11, 2015
    Inventor: Pekka Juha Soininen
  • Patent number: 7749871
    Abstract: The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: July 6, 2010
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 7601223
    Abstract: An apparatus for depositing thin films onto a substrate is provided. The apparatus includes a gas exchange plate that is positioned within a reaction chamber having a platform. The gas exchange plate may be positioned above or below the platform and comprises a first plurality of passages and a second plurality of passages machined therein. The first plurality of passages is in fluid communication with a first reactant source and a purge gas source. Similarly, the second plurality of passages is in fluid communication with a second reactant source and a purge gas source. The first and the second plurality of passages are fluidly connected to first and second plurality of apertures that open to the reaction chamber. Gases are removed from the reaction space through third plurality of apertures within the gas exchange plate that are in fluid communication with exhaust space.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: October 13, 2009
    Assignee: ASM International N.V.
    Inventors: Sven Lindfors, Pekka Juha Soininen
  • Patent number: 7485340
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 3, 2009
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 7329590
    Abstract: The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: February 12, 2008
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 7241677
    Abstract: This invention concerns a process for producing integrated circuits containing at least one layer of elemental metal which during the processing of the integrated circuit is at least partly in the form of metal oxide, and the use of an organic compound containing certain functional groups for the reduction of a metal oxide layer formed during the production of an integrated circuit. According to the present process the metal oxide layer is at least partly reduced to elemental metal with a reducing agent selected from organic compounds containing one or more of the following functional groups: alcohol (—OH), aldehyde (—CHO), and carboxylic acid (—COOH).
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: July 10, 2007
    Assignee: ASM International N.V.
    Inventors: Pekka Juha Soininen, Kai-Erik Elers
  • Patent number: 7144809
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: December 5, 2006
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6921712
    Abstract: This invention concerns a process for producing integrated circuits containing at least one layer of elemental metal which during the processing of the integrated circuit is at least partly in the form of metal oxide, and the use of an organic compound containing certain functional groups for the reduction of a metal oxide layer formed during the production of an integrated circuit. According to the present process the metal oxide layer is at least partly reduced to elemental metal with a reducing agent selected from organic compounds containing one or more of the following functional groups: alcohol (—OH), aldehyde (—CHO), and carboxylic acid (—COOH).
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: July 26, 2005
    Assignee: ASM International NV
    Inventors: Pekka Juha Soininen, Kai-Erik Elers
  • Patent number: 6902763
    Abstract: The present method provides tools for growing conformal metal nitride, metal carbide and metal thin films, and nanolaminate structures incorporating these films, from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide and transition metal nitride thin films on various surfaces, such as metals and oxides. Getter compounds protect surface sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures (20) incorporating metal nitrides, such as titanium nitride (30) and tungsten nitride (40), and metal carbides, and methods for forming the same, are also disclosed.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: June 7, 2005
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6863727
    Abstract: This invention concerns a method for depositing transition metal nitride thin films by an Atomic Layer Deposition (ALD) type process. According to the method vapor-phase pulse of a source material, a reducing agent capable of reducing metal source material, and a nitrogen source material capable of reacting with the reduced metal source material are alternately and sequentially fed into a reaction space and contacted with the substrate. According to the invention as the reducing agent is used a boron compound which is capable of forming gaseous reaction byproducts when reacting with the metal source material.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: March 8, 2005
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Suvi Päivikki Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6852635
    Abstract: Methods are disclosed for selective deposition on desired materials. In particular, barrier materials are selectively formed on insulating surfaces, as compared to conductive surfaces. In the context of contact formation and trench fill, particularly damascene and dual damascene metallization, the method advantageously lines insulating surfaces with a barrier material. The selective formation allows the deposition to be “bottomless,” thus leaving the conductive material at a via bottom exposed for direct metal-to-metal contact when further conductive material is deposited into the opening after barrier formation on the insulating surfaces. Desirably, the selective deposition is accomplished by atomic layer deposition (ALD), resulting in highly conformal coverage of the insulating sidewalls in the opening.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: February 8, 2005
    Assignees: Interuniversitair Nizroelecmica, ASM International NV
    Inventors: Alessandra Satta, Karen Maex, Kai-Erik Elers, Ville Antero Saanila, Pekka Juha Soininen, Suvi P. Haukka
  • Patent number: 6821889
    Abstract: The present invention relates generally to depositing elemental thin films. In particular, the invention concerns a method of growing elemental metal thin films by Atomic Layer Deposition (ALD) using a boron compound as a reducing agent. In a preferred embodiment the method comprises introducing vapor phase pulses of at least one metal source compound and at least one boron source compound into a reaction space that contains a substrate on which the metal thin film is to be deposited. Preferably the boron compound is capable of reducing the adsorbed portion of the metal source compound into its elemental electrical state.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: November 23, 2004
    Assignee: ASM International N.V.
    Inventors: Kai-Erik Elers, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Publication number: 20040216668
    Abstract: An apparatus for depositing thin films onto a substrate is provided. The apparatus includes a gas exchange plate that is positioned within a reaction chamber having a platform. The gas exchange plate may be positioned above or below the platform and comprises a first plurality of passages and a second plurality of passages machined therein. The first plurality of passages is in fluid communication with a first reactant source and a purge gas source. Similarly, the second plurality of passages is in fluid communication with a second reactant source and a purge gas source. The first and the second plurality of passages are fluidly connected to first and second plurality of apertures that open to the reaction chamber. Gases are removed from the reaction space through third plurality of apertures within the gas exchange plate that are in fluid communication with exhaust space.
    Type: Application
    Filed: February 18, 2004
    Publication date: November 4, 2004
    Inventors: Sven Lindfors, Pekka Juha Soininen
  • Patent number: 6800552
    Abstract: The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: October 5, 2004
    Assignee: ASM International, N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6794287
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: September 21, 2004
    Assignee: ASM International NV
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen
  • Publication number: 20040121616
    Abstract: Methods are disclosed for selective deposition on desired materials. In particular, barrier materials are selectively formed on insulating surfaces, as compared to conductive surfaces. In the context of contact formation and trench fill, particularly damascene and dual damascene metallization, the method advantageously lines insulating surfaces with a barrier material. The selective formation allows the deposition to be “bottomless,” thus leaving the conductive material at a via bottom exposed for direct metal-to-metal contact when further conductive material is deposited into the opening after barrier formation on the insulating surfaces. Desirably, the selective deposition is accomplished by atomic layer deposition (ALD), resulting in highly conformal coverage of the insulating sidewalls in the opening.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 24, 2004
    Inventors: Alessandra Satta, Karen Maex, Kai-Erik Elers, Ville Antero Saanila, Pekka Juha Soininen, Suvi P. Haukka
  • Publication number: 20040038529
    Abstract: This invention concerns a process for producing integrated circuits containing at least one layer of elemental metal which during the processing of the integrated circuit is at least partly in the form of metal oxide, and the use of an organic compound containing certain functional groups for the reduction of a metal oxide layer formed during the production of an integrated circuit. According to the present process the metal oxide layer is at least partly reduced to elemental metal with a reducing agent selected from organic compounds containing one or more of the following functional groups: alcohol (—OH), aldehyde (—CHO), and carboxylic acid (—COOH).
    Type: Application
    Filed: November 15, 2002
    Publication date: February 26, 2004
    Inventors: Pekka Juha Soininen, Kai-Erik Elers
  • Patent number: 6664192
    Abstract: Methods are disclosed for selective deposition on desired materials. In particular, barrier materials are selectively formed on insulating surfaces, as compared to conductive surfaces. In the context of contact formation and trench fill, particularly damascene and dual damascene metallization, the method advantageously lines insulating surfaces with a barrier material. The selective formation allows the deposition to be “bottomless,” thus leaving the conductive material at a via bottom exposed for direct metal-to-metal contact when further conductive material is deposited into the opening after barrier formation on the insulating surfaces. Desirably, the selective deposition is accomplished by atomic layer deposition (ALD), resulting in highly conformal coverage of the insulating sidewalls in the opening.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: December 16, 2003
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), ASM International N.V.
    Inventors: Alessandra Satta, Karen Maex, Kai-Erik Elers, Ville Antero Saanila, Pekka Juha Soininen, Suvi P. Haukka
  • Publication number: 20030186495
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Application
    Filed: March 20, 2003
    Publication date: October 2, 2003
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6599572
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 29, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen