Patents by Inventor Pen-Hsiu Chang

Pen-Hsiu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8278549
    Abstract: The invention relates to a solar photovoltaic energy conversion apparatus. The apparatus consists of a substrate, a buffer layer formed on the substrate layer, a first transparent conductive oxide layer formed on the buffer layer, periodic protrusions containing first silicon layers formed on the first transparent conductive oxide layer, second silicon layers formed on the first silicon layers, a second transparent conductive oxide layer covering the first silicon layers, the second silicon layers and the first transparent conductive oxide layer, and an anti-reflective protective layer. The first silicon layer and the second silicon layer are the electrodes with the opposite type of charge carriers. The first transparent conductive layer and the second transparent conductive layer are the electrodes with the opposite type of charge carriers. This TCO-based hybrid solar photovoltaic energy conversion device not only can allow the transmission of visible sunlight but also can enhance the photovoltaic energy.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 2, 2012
    Assignee: Chang Gung University
    Inventors: Hsin-Chun Lu, Kuo-mei Wu, Pen-Hsiu Chang, Chun-Lung Chu, Chi-Yo Lai
  • Publication number: 20090084439
    Abstract: The invention relates to a solar photovoltaic energy conversion apparatus. The apparatus consists of a substrate, a buffer layer formed on the substrate layer, a first transparent conductive oxide layer formed on the buffer layer, periodic protrusions containing first silicon layers formed on the first transparent conductive oxide layer, second silicon layers formed on the first silicon layers, a second transparent conductive oxide layer covering the first silicon layers, the second silicon layers and the first transparent conductive oxide layer, and an anti-reflective protective layer. The first silicon layer and the second silicon layer are the electrodes with the opposite type of charge carriers. The first transparent conductive layer and the second transparent conductive layer are the electrodes with the opposite type of charge carriers. This TCO-based hybrid solar photovoltaic energy conversion device not only can allow the transmission of visible sunlight but also can enhance the photovoltaic energy.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 2, 2009
    Applicant: Chang Gung University
    Inventors: Hsin-Chun Lu, Kuo-mei Wu, Pen-Hsiu Chang, Chun-Lung Chu, Chi-Yo Lai
  • Publication number: 20080053518
    Abstract: The present invention discloses a transparent solar cell system, which comprises: a light-permeable solar energy conversion device, balance units and conductive wires. The light-permeable solar energy conversion device has a transparent photovoltaic element, which is a PN semiconductor structure formed of two transparent conductive films. The transparent conductive films are respectively made of different oxides. The substrate of the transparent solar cell system is made of a common glass or a common plastic; therefore, the transparent solar cell system of the present invention is lightweight and environment-friendly. Further, the present invention has a simple fabrication process and a low fabrication cost; therefore, the present invention can be extensively applied to the windows and doors of buildings and vehicles and benefits the popularization of solar energy.
    Type: Application
    Filed: September 5, 2006
    Publication date: March 6, 2008
    Inventors: Pen-Hsiu Chang, Hsin-Chun Lu, Ching-Ting Lee, Lain-Be Chang, Gwo-Mei Wu, Nai-Chuan Chen, An-Ping Chiu
  • Publication number: 20070045607
    Abstract: The present invention discloses a AlGaInN nitride substrate structure using TiN as buffer layer and the manufacturing method thereof. The present invention deposits TiN having (111) surface onto the silicon substrate having (111) surface as a buffer layer, and grows III-V AlGaInN nitride epitaxy structure having (0001) surface. The present method can form high-quality III-V AlGaInN nitride epitaxy layer to manufacture the vertical-conducted III-V AlGaInN nitride devices and utilize the high-reflection TiN surface to enhance the efficiency of the opti-electrical devices. The present invention can further prevent the silicon substrate forming the noncrystalline SiNx in the AlGaInN epitaxy process, so that the yield of the chip can be improved.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 1, 2007
    Inventors: Nai-Chuan Chen, Chin-An Chang, Pen-Hsiu Chang, Chuan-Feng Shih, Wei-Chieh Lien
  • Publication number: 20060017060
    Abstract: A semiconductor device using an electrically conductive substrate that has a metal connection includes an n-type/p-type electrically conductive substrate and one buffer layer formed on the n-type/p-type electrically conductive substrate. An electrically conductive semiconductor layer is formed on the buffer layer, and the metal connection is formed between the electrically conductive semiconductor layer and the electrically conductive substrate, wherein the electrically conductive semiconductor layer is an n-type/p-type nitride.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 26, 2006
    Applicants: Nai-Chuan Chen, Uni Light Technology Inc.
    Inventors: Nai-Chuan Chen, Pen-Hsiu Chang, An-Ping Chiu, Chuan-Feng Shih, Shun-Da Teng