Patents by Inventor Penglin Wu

Penglin Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9921194
    Abstract: A wavy micro gas chromatography column includes a silicon substrate and a bonded glass cover. A micro channel having a rectangular cross section is etched on the silicon substrate and coated with a stationary phase film. A projection figure of the micro channel on the silicon substrate includes multiple regular wavy curves. Each wavy curve is formed through alternately connecting first upper arcs with first lower arcs. Because the groove has a curving structure, the carrier gas velocity is decreased as the increase of the arc angle, resulting in an improvement of the flow uniformity at the zones between two adjacent bends but also an enlarging nonsymmetric distribution at the bends. Thus, an optimal curving structure can make the overall flow more even, and in turn achieve a better separation performance compared to the straight channel columns. Meanwhile, a wavy channel realizes a longer column length on a given area.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: March 20, 2018
    Assignee: University of Electronic Science and Technology of China
    Inventors: Xiaosong Du, Huan Yuan, Xulan Zhao, Penglin Wu, Yadong Jiang
  • Patent number: 9726651
    Abstract: A double-sided diaphragm micro gas-preconcentrator has a micro-gas chamber which is formed by stacking an upper silicon substrate with a lower silicon substrate with a back-on-face configuration. One or more suspended membranes are provided on every silicon substrate. The silicon where the suspended membrane is provided is completely removed for forming a cavity. A thin-film heater is deposited on every suspended membrane. A sorptive film is coated on an inner wall of every suspended membrane. Thus, the upper and lower sides of the preconcentrator in the present invention are suspended membranes, which improve the area of the sorptive film on the diaphragm. As a result, the preconcentrating factor is improved while keeping the small heat capacity, fast heating rate, and low power consumption features of the planar diaphragm preconcentrator.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 8, 2017
    Assignee: University of Electronic Science and Technology of China
    Inventors: Xiaosong Du, Luhua Cheng, Penglin Wu, Huan Yuan, Yadong Jiang, Ze Wu, Yi Li, Dong Qiu
  • Publication number: 20160266073
    Abstract: A wavy micro gas chromatography column includes a silicon substrate and a bonded glass cover. A micro channel having a rectangular cross section is etched on the silicon substrate and coated with a stationary phase film. A projection figure of the micro channel on the silicon substrate includes multiple regular wavy curves. Each wavy curve is formed through alternately connecting first upper arcs with first lower arcs. Because the groove has a curving structure, the carrier gas velocity is decreased as the increase of the arc angle, resulting in an improvement of the flow uniformity at the zones between two adjacent bends but also an enlarging nonsymmetric distribution at the bends. Thus, an optimal curving structure can make the overall flow more even, and in turn achieve a better separation performance compared to the straight channel columns. Meanwhile, a wavy channel realizes a longer column length on a given area.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Inventors: Xiaosong Du, Huan Yuan, Xulan Zhao, Penglin Wu, Yadong Jiang
  • Publication number: 20150160172
    Abstract: A double-sided diaphragm micro gas-preconcentrator has a micro-gas chamber which is formed by stacking an upper silicon substrate with a lower silicon substrate with a back-on-face configuration. One or more suspended membranes are provided on every silicon substrate. The silicon where the suspended membrane is provided is completely removed for forming a cavity. A thin-film heater is deposited on every suspended membrane. A sorptive film is coated on an inner wall of every suspended membrane. Thus, the upper and lower sides of the preconcentrator in the present invention are suspended membranes, which improve the area of the sorptive film on the diaphragm. As a result, the preconcentrating factor is improved while keeping the small heat capacity, fast heating rate, and low power consumption features of the planar diaphragm preconcentrator.
    Type: Application
    Filed: January 9, 2015
    Publication date: June 11, 2015
    Inventors: Xiaosong Du, Luhua Cheng, Penglin Wu, Huan Yuan, Yadong Jiang, Ze Wu, Yi Li, Dong Qiu