Patents by Inventor Pengting LI

Pengting LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981978
    Abstract: A method for preparing high-purity nickel-based superalloy includes the steps of: performing electron beam smelting on small cylinders in a first water-cooled copper crucible after preheating an electron gun, and converging the beam to the edge of one side of the ingot; turning on the electron gun again after completely solidifying the ingot, the electron beam spot uniformly and slowly scanning a surface of the ingot from a side opposite to a final beam converging area of the ingot to the final beam converging area of the ingot to ensure that the alloy at a position scanned by the electron beam spot is completely melted, and stopping scanning once scanning to the final converging area of the ingot; casting the molten alloy in the first water-cooled copper crucible to the second water-cooled copper crucible; taking out the refined nickel-base superalloy after cooling down the electron beam melting furnace.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 14, 2024
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Yi Tan, Xinpeng Zhuang, Longhai Zhao, Xiaogang You, Pengting Li, Yinong Wang
  • Publication number: 20220267878
    Abstract: A method for preparing high-purity nickel-based superalloy includes the steps of: performing electron beam smelting on small cylinders in a first water-cooled copper crucible after preheating an electron gun, and converging the beam to the edge of one side of the ingot; turning on the electron gun again after completely solidifying the ingot, the electron beam spot uniformly and slowly scanning a surface of the ingot from a side opposite to a final beam converging area of the ingot to the final beam converging area of the ingot to ensure that the alloy at a position scanned by the electron beam spot is completely melted, and stopping scanning once scanning to the final converging area of the ingot; casting the molten alloy in the first water-cooled copper crucible to the second water-cooled copper crucible; taking out the refined nickel-base superalloy after cooling down the electron beam melting furnace.
    Type: Application
    Filed: June 12, 2020
    Publication date: August 25, 2022
    Inventors: Yi TAN, Xinpeng ZHUANG, Longhai ZHAO, Xiaogang YOU, Pengting LI, Yinong WANG