Patents by Inventor Pentti K. Loukusa

Pentti K. Loukusa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10005925
    Abstract: Articles with thin caliper melt coatings of high molecular weight, high viscosity materials and methods of making such coatings.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 26, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Patrick D. Hyde, Jeffrey M. Imsande, Jayshree Seth, Craig E. Hamer, Rebecca A. Shipman, Robert B. Secor, Michael C. Martin, Pentti K. Loukusa
  • Patent number: 9744708
    Abstract: A method of controlling a slot die comprises, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, changing the position of the actuators with the controller to either increase the cross-directional thickness of the fluid flow path adjacent each of the actuators or substantially close the fluid flow path adjacent the actuators, and after changing the cross-directional thickness of the fluid flow path adjacent each of the actuators, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, repositioning each of the actuators with the controller according to the set of discrete settings to resume operating the slot die with the actuators positioned according to the set of discrete settings.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 29, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Pentti K. Loukusa, Robert A. Yapel, Terence D. Neavin, Jennifer L. Trice, Kristopher K. Biegler, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Robert B. Secor
  • Patent number: 9579684
    Abstract: A system comprises a slot die including an applicator slot extending about a width of the slot die, wherein the applicator slot is in fluid communication with a fluid flow path through the slot die, and a plurality of actuators spaced about the width of the slot die, wherein each actuator in the plurality of actuators is operable to adjust a cross-directional thickness of the fluid flow path at its respective location to provide a local adjustment of fluid flow through the applicator slot. The system further comprises a controller configured to set the position of each actuator according to one of a plurality of discrete settings for operation of the slot die. The controller is further configured to, using fluid dynamics and a digital model of the die, predict a set of discrete settings from the plurality of discrete settings corresponding to a preselected cross-web profile for the extrudate.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 28, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert A. Yapel, Jennifer L. Trice, Pentti K. Loukusa, Paul C. Thomas, Kristopher K. Biegler, William J. Kopecky, Keith R. Bruesewitz, Robert B. Secor
  • Patent number: 9216535
    Abstract: A method of controlling a slot die comprises positioning actuators of the slot die with a controller according to a first set of discrete settings, operating the slot die by passing an extrudate through the fluid flow path and out the applicator slot with the actuators positioned according to the first set of discrete settings, and while passing the extrudate through the fluid flow path and out the applicator slot, changing the positions of the actuators with the controller to create patterned features in the extrudate.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: December 22, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Jennifer L. Trice, Pentti K. Loukusa, Robert A. Yapel, Robert B. Secor, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Kristopher K. Biegler
  • Publication number: 20150224700
    Abstract: A method of controlling a slot die comprises, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, changing the position of the actuators with the controller to either increase the cross-directional thickness of the fluid flow path adjacent each of the actuators or substantially close the fluid flow path adjacent the actuators, and after changing the cross-directional thickness of the fluid flow path adjacent each of the actuators, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, repositioning each of the actuators with the controller according to the set of discrete settings to resume operating the slot die with the actuators positioned according to the set of discrete settings.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Inventors: Pentti K. Loukusa, Robert A. Yapel, Terence D. Neavin, Jennifer L. Trice, Kristopher K. Biegler, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Robert B. Secor
  • Patent number: 9044894
    Abstract: A method of controlling a slot die comprises, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, changing the position of the actuators with the controller to either increase the cross-directional thickness of the fluid flow path adjacent each of the actuators or substantially close the fluid flow path adjacent the actuators, and after changing the cross-directional thickness of the fluid flow path adjacent each of the actuators, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, repositioning each of the actuators with the controller according to the set of discrete settings to resume operating the slot die with the actuators positioned according to the set of discrete settings.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 2, 2015
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Pentti K. Loukusa, Robert A. Yapel, Terence D. Neavin, Jennifer L. Trice, Kristopher K. Biegler, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Robert B. Secor
  • Publication number: 20140234584
    Abstract: Articles with thin caliper melt coatings of high molecular weight, high viscosity materials and methods of making such coatings.
    Type: Application
    Filed: October 19, 2012
    Publication date: August 21, 2014
    Inventors: Patrick D. Hyde, Jeffrey M. Imsande, Jayshree Seth, Craig E. Hamer, Rebecca A. Shipman, Robert B. Secor, Michael C. Martin, Pentti K. Loukusa
  • Publication number: 20120315378
    Abstract: A system comprises a slot die including an applicator slot extending about a width of the slot die, wherein the applicator slot is in fluid communication with a fluid flow path through the slot die, and a plurality of actuators spaced about the width of the slot die, wherein each actuator in the plurality of actuators is operable to adjust a cross-directional thickness of the fluid flow path at its respective location to provide a local adjustment of fluid flow through the applicator slot. The system further comprises a controller configured to set the position of each actuator according to one of a plurality of discrete settings for operation of the slot die. The controller is further configured to, using fluid dynamics and a digital model of the die, predict a set of discrete settings from the plurality of discrete settings corresponding to a preselected cross-web profile for the extrudate.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Inventors: Robert A. Yapel, Jennifer L. Trice, Pentti K. Loukusa, Paul C. Thomas, Kristopher K. Biegler, William J. Kopecky, Keith R. Bruesewitz, Robert A. Secor
  • Publication number: 20120313274
    Abstract: A method of controlling a slot die comprises, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, changing the position of the actuators with the controller to either increase the cross-directional thickness of the fluid flow path adjacent each of the actuators or substantially close the fluid flow path adjacent the actuators, and after changing the cross-directional thickness of the fluid flow path adjacent each of the actuators, while continuing to pass the extrudate through the fluid flow path and out the applicator slot, repositioning each of the actuators with the controller according to the set of discrete settings to resume operating the slot die with the actuators positioned according to the set of discrete settings.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Inventors: Pentti K. Loukusa, Robert A. Yapel, Terence D. Neavin, Jennifer L. Trice, Kristopher K. Biegler, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Robert B. Secor
  • Publication number: 20120313275
    Abstract: A method of controlling a slot die comprises positioning actuators of the slot die with a controller according to a first set of discrete settings, operating the slot die by passing an extrudate through the fluid flow path and out the applicator slot with the actuators positioned according to the first set of discrete settings, and while passing the extrudate through the fluid flow path and out the applicator slot, changing the positions of the actuators with the controller to create patterned features in the extrudate.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Inventors: Jennifer L. Trice, Pentti K. Loukusa, Robert A. Yapel, Robert B. Secor, Paul C. Thomas, William J. Kopecky, Keith R. Bruesewitz, Kristopher K. Biegler
  • Patent number: 7455897
    Abstract: The invention is a contact die for dispensing of flowable material on a substrate. The contact die includes at least one die block including a first internal passage. A die lip portion is disposed on the die block having a lateral dimension. A first plurality of orifices is disposed through the die lip portion proximate to each other and in communication with the internal passage to dispense flowable material as a single strip on the substrate. A first edge is disposed on one lateral side of the first plurality of orifices to direct the flowable material.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 25, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Pentti K. Loukusa, Kurt W. Oster, Todd L. Peterson, Robert B. Secor, Rebecca A. Shipman, Merlin J. Steffen
  • Patent number: 6803076
    Abstract: The invention is a contact die for dispensing of flowable material on a substrate. The contact die includes at least one die block including a first internal passage. A die lip portion is disposed on the die block having a lateral dimension. A first plurality of orifices is disposed through the die lip portion proximate to each other and in communication with the internal passage to dispense flowable material as a single strip on the substrate. A first edge is disposed on one lateral side of the first plurality of orifices to direct the flowable material.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: October 12, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Pentti K. Loukusa, Kurt W. Oster, Todd L. Peterson, Robert B. Secor, Rebecca A. Shipman, Merlin J. Steffen
  • Publication number: 20030192473
    Abstract: The invention is a contact die for dispensing of flowable material on a substrate. The contact die includes at least one die block including a first internal passage. A die lip portion is disposed on the die block having a lateral dimension. A first plurality of orifices is disposed through the die lip portion proximate to each other and in communication with the internal passage to dispense flowable material as a single strip on the substrate. A first edge is disposed on one lateral side of the first plurality of orifices to direct the flowable material.
    Type: Application
    Filed: October 23, 2002
    Publication date: October 16, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Pentti K. Loukusa, Kurt W. Oster, Todd L. Peterson, Robert B. Secor, Rebecca A. Shipman, Merlin J. Steffen