Patents by Inventor Per Brandt Rasmussen

Per Brandt Rasmussen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8945064
    Abstract: An infusion device for continuous infusion of medication is disclosed, in which infusion is controlled over two separate fluid communications. The infusion is in each fluid communication controlled by restricting means and valve means, and one of the fluid communications further contains a holding device for bolus rate of infusion. The device comprises a flow regulating device comprising a passage defined by at least a first element and a second element, wherein at least one of the first and second element is a primary deformable element adapted to be elastically deformed so as to change the cross sectional area of the passage. Furthermore the device comprises a container for storage and supply of a medication in fluid form, said container comprising a first and a second chamber being arranged relatively to each other so that when volume of the first chamber increases the volume of the second chamber decreases.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: February 3, 2015
    Assignee: CeQur SA
    Inventors: Peter Gravesen, Per Brandt Rasmussen, Holger Dirac
  • Patent number: 8449772
    Abstract: A micro fluidic system comprising at least one tube (1), a membrane (3) and at least one fitting member (4). The fitting member (4) is positioned around the membrane (3) and an end part (2) of the tube(s) (1), thereby fitting the membrane (3) to the end part(s) (2). The fitting member(s) (4) is/are made from a shrinkable material, and it/they is/are fitted tightly around the membrane (3) end part(s) (2). This is obtained by causing the shrinkable material to shrink, e.g. by heating the material, while the fitting member (4) is positioned around the membrane (3) and the end part(s) (2). It is an advantage that the fitting member (4) is made from a shrinkable material because this provides the possibility of fitting the membrane (3) tightly to the end part(s) (2) in an easy and cost effective manner. The micro fluidic system is very suitable for use in a probe, such as a dialysis probe. Also claimed is a method of manufacturing the micro fluidic system.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: May 28, 2013
    Assignee: Flowsion ApS
    Inventors: Holger Dirac, Per Brandt Rasmussen, Arne Briest
  • Publication number: 20100218834
    Abstract: The invention provides a micro fluid device comprising a substrate with a channel forming a receiving cavity, an outer chamber, and an inner chamber, the device further comprising a multi lumen hose with a free end portion which is fixed in the receiving cavity. The multi lumen hose forming a first conduit and at least one second conduit located radially offset from the first conduit, and the outer chamber is in fluid communication with at least one second conduit, and the inner chamber is in fluid communication with the first conduit. The chambers are separated by an inner sealing member located between the substrate and the hose. To simplify the manufacturing of the device, the channel is formed by a groove in an upper surface of a body of the substrate, which groove closed by an essentially plane cover which is sealed to the upper surface.
    Type: Application
    Filed: January 30, 2007
    Publication date: September 2, 2010
    Applicant: Diramo A/S
    Inventors: Per Brandt Rasmussen, Peter Gravesen
  • Publication number: 20090218272
    Abstract: A micro fluidic system comprising at least one tube (1), a membrane (3) and at least one fitting member (4). The fitting member (4) is positioned around the membrane (3) and an end part (2) of the tube(s) (1), thereby fitting the membrane (3) to the end part(s) (2). The fitting member(s) (4) is/are made from a shrinkable material, and it/they is/are fitted tightly around the membrane (3) end part(s) (2). This is obtained by causing the shrinkable material to shrink, e.g. by heating the material, while the fitting member (4) is positioned around the membrane (3) and the end part(s) (2). It is an advantage that the fitting member (4) is made from a shrinkable material because this provides the possibility of fitting the membrane (3) tightly to the end parts) (2) in an easy and cost effective manner. The micro fluidic system is very suitable for use in a probe, such as a dialysis probe. Also claimed is a method of manufacturing the micro fluidic system.
    Type: Application
    Filed: August 22, 2006
    Publication date: September 3, 2009
    Applicant: DANFOSS A/S
    Inventors: Holger Dirac, Per Brandt Rasmussen, Arne Briest
  • Patent number: 7520295
    Abstract: In a capillary carrier with an inlet and an outlet, a channel is formed and extends between the inlet and the outlet. At least one capillary tube is arranged within the channel, and sealing elements, by which the capillary tube is sealingly fixed to the channel, are arranged at least near an inlet portion and an outlet portion of the capillary tube. An area is formed limited by a part of the channel, the sealing elements and the exterior of the capillary tube, which is in connection with the exterior of the carrier through a fluid communication pad, whereby a possible fluid leak across the sealing elements will be led to this area, and from there to the exterior of the carrier.
    Type: Grant
    Filed: January 24, 2004
    Date of Patent: April 21, 2009
    Assignees: Cequr Aps., Diramo A/S
    Inventors: Per Brandt Rasmussen, Heiko Arndt
  • Patent number: 7517335
    Abstract: An infusion device for continuous infusion of medication is disclosed, in which infusion is controlled over two separate fluid communications. The infusion is in each fluid communication controlled by restricting means and valve means, and one of the fluid communications farther contains a holding device for bolus rate of infusion for a short period. The device comprises a flow regulating device comprising a passage defined by at least a first element and a second element, wherein at least one of the first and second element is a primary deformable element adapted to be elastically deformed so as to change the cross sectional area of the passage. Furthermore the device comprises a container for storage and supply of a medication in fluid form, said container comprising a first and a second chamber being arranged relatively to each other so that when volume of the first chamber Increases the volume of the second chamber decreases.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: April 14, 2009
    Assignee: CeQur ApS
    Inventors: Peter Gravesen, Per Brandt Rasmussen, Holger Dirac
  • Publication number: 20090054867
    Abstract: An infusion device for continuously infusion of medication is disclosed, in which infusion is controlled over two separate fluid communications. The infusion is in each fluid communication controlled by restricting means and valve means, and one of the fluid communications further contains a holding device for bolus rate of infusion for a short period. The device comprises a flow regulating device comprising a passage defined by at least a fact element is a primary deformable element adapted to be elastically deformed so as to change the cross sectional area of the passage. Furthermore the device comprises a container for storage and supply of a medication in fluid form, said container comprising a first and a second chamber being arranged relatively to each other so that when volume of the first chamber increases the volume of the second chamber decreases.
    Type: Application
    Filed: August 21, 2008
    Publication date: February 26, 2009
    Inventors: Peter Gravesen, Per Brandt Rasmussen, Holger Dirac
  • Patent number: 7431052
    Abstract: The present invention relates to apparatus for delivering a controlled or restricted flow of liquid and limiting bubble fragmentation at the inlet. This is achieved in flow restrictor with a flow channel having over most of its length a substantially constant, minimum hydraulic diameter D=4A/W wherein A is the minimum local cross-sectional area of the channel and W is the minimum local wetting perimeter of the channel, by smoothly widening the channel at its inlet such that: at distances z from the inlet face with 0<z<z1, the channel has a hydraulic diameter Dz?k*D wherein k?1.3; at distances z from the inlet face with z1<z<z2, the channel has a hydraulic diameter Dz with k*D?Dz?D; and at distances z from the inlet face with z2<z, the channel has a hydraulic diameter Dz with Dz?1.02D, except possibly for a similar widening of the channel at the outlet.
    Type: Grant
    Filed: September 4, 2004
    Date of Patent: October 7, 2008
    Assignee: Danfoss A/S
    Inventors: Peter Gravesen, Martin Manscher, Per Brandt Rasmussen
  • Publication number: 20050165384
    Abstract: An infusion device for continuously infusion of medication is disclosed, in which infusion is controlled over two separate fluid communications. The infusion is in each fluid communication controlled by restricting means and valve means, and one of the fluid communications further contains a holding device for bolus rate of infusion for a short period. The device comprises a flow regulating device comprising a passage defined by at least a first element and a second element, wherein at least one of the first and second element is a primary deformable element adapted to be elastically deformed so as to change the cross sectional area of the passage. Furthermore the device comprises a container for storage and supply of a medication in fluid form, said container comprising a first and a second chamber being arranged relatively to each other so that when volume of the first chamber increases the volume of the second chamber decreases.
    Type: Application
    Filed: February 18, 2003
    Publication date: July 28, 2005
    Applicant: Danfoss A/S
    Inventors: Peter Gravesen, Per Brandt Rasmussen, Holger Dirac