Patents by Inventor Per Erik Sjodin

Per Erik Sjodin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9919385
    Abstract: An iron-based braze filler alloy consists of from 9 wt % to 30 wt % Cr; from 5 wt % to 25 wt % Ni; from 0.5 wt % to 9 wt % Mo; from 1 wt % to 5 wt % Mn; from 0 wt % to 1 wt % N; from 6 wt % to 20 wt % Si; from 0.1 wt % to 15 wt % P; and is balanced with Fe.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 20, 2018
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Publication number: 20170259382
    Abstract: An iron-based braze filler alloy consists of from 9 wt % to 30 wt % Cr; from 5 wt % to 25 wt % Ni; from 0.5 wt % to 9 wt % Mo; from 1 wt % to 5 wt % Mn; from 0 wt % to 1 wt % N; from 6 wt % to 20 wt % Si; from 0.1 wt % to 15 wt % P; and is balanced with Fe.
    Type: Application
    Filed: March 29, 2017
    Publication date: September 14, 2017
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Patent number: 9702641
    Abstract: An iron-based braze filler alloy consists of from 9 wt % to 30 wt % Cr; from 5 wt % to 25 wt % Ni; from 0.5 wt % to 9 wt % Mo; from 1 wt % to 5 wt % Mn; from 0 wt % to 1 wt % N; from 6 wt % to 20 wt % Si; from 0.1 wt % to 15 wt % P; and is balanced with Fe.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 11, 2017
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Patent number: 9513071
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 6, 2016
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Patent number: 9513072
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 6, 2016
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Publication number: 20160250721
    Abstract: An iron-based braze filler alloy consists of from 9 wt % to 30 wt % Cr; from 5 wt % to 25 wt % Ni; from 0.5 wt % to 9 wt % Mo; from 1 wt % to 5 wt % Mn; from 0 wt % to 1 wt % N; from 6 wt % to 20 wt % Si; from 0.1 wt % to 15 wt % P; and is balanced with Fe.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Publication number: 20150053389
    Abstract: The present invention relates to a method of brazing articles of stainless steel, which method comprises the following steps: step (i) applying an iron-based brazing filler material to parts of stainless steel; step (ii) optionally assembling the parts; step (iii) heating the parts from step (i) or step (ii) to a temperature of at least about 1000° C. in a non-oxidizing atmosphere, a reducing atmosphere, vacuum or combinations thereof, and heating the parts at the temperature of at least about 1000° C. for at least about 15 minutes; step (iv) providing articles having an average hardness of less than about 600 HV1 of the obtained brazed areas. The present invention relates also to brazed articles of stainless steel.
    Type: Application
    Filed: September 10, 2014
    Publication date: February 26, 2015
    Applicant: Alfa Laval Corporate AB
    Inventors: Per Erik Sjodin, Jens Rassmus
  • Publication number: 20140338871
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 20, 2014
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Erik Sjodin
  • Patent number: 8776371
    Abstract: The invention refers to a method of brazing together thin heat exchanging plates of an iron based base material provided with port holes and a pressing pattern of elevations and depressions over the heat exchanging area of the plates and, if present, also over the distribution area to a plate heat exchanger. The plates are coated with brazing material and are arranged such that contact between elevations and depressions in adjacent plates is obtained prior to the brazing together. The plates are then brazed together at the resultant contact points. Only 5-40%, preferably 10-30%, of the heat exchanging area and the distribution area are coated with brazing material prior to the brazing.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: July 15, 2014
    Assignee: Alfa Laval Corporate AB
    Inventors: Jens Erik Johannes Rassmus, Per Erik Sjodin
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Patent number: 7685716
    Abstract: The invention refers to a method of brazing together thin heat exchanging plates of an iron based base material provided with port holes and a pressing pattern of elevations and depressions over the heat exchanging area of the plates and, if present, also over the distribution area to a plate heat exchanger. The plates are coated with brazing material and are arranged such that contact between elevations and depressions in adjacent plates is obtained prior to the brazing together. The plates are then brazed together at the resultant contact points. Only 5-40%, preferably 10-30%, of the heat exchanging area and the distribution area are coated with brazing material prior to the brazing.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: March 30, 2010
    Assignee: Alfa Laval Corporate AB
    Inventors: Jens Erik Johannes Rassmus, Per Erik Sjodin
  • Patent number: 7455811
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains approximately 9-30% Cr, approximately 0-8% Mn, approximately 0-25% Ni, 0-1% N, a maximum of 7% Mo, less than about 6% Si, approximately 0-2% B and/or about 0-15% P, all stated in weight percent, which addition of Si, P, and B in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as Si, P and B.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2008
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Publication number: 20080127494
    Abstract: The invention refers to a method of brazing together thin heat exchanging plates of an iron based base material provided with port holes and a pressing pattern of elevations and depressions over the heat exchanging area of the plates and, if present, also over the distribution area to a plate heat exchanger. The plates are coated with brazing material and are arranged such that contact between elevations and depressions in adjacent plates is obtained prior to the brazing together. The plates are then brazed together at the resultant contact points. Only 5-40%, preferably 10-30%, of the heat exchanging area and the distribution area are coated with brazing material prior to the brazing.
    Type: Application
    Filed: November 7, 2007
    Publication date: June 5, 2008
    Applicant: Alfa Laval Corporate AB
    Inventors: Jens Erik Johannes Rassmus, Per Erik Sjodin
  • Patent number: 7285151
    Abstract: The invention relates to an iron based material for coating of surfaces which comprises a binding phase in the form of a corrosion dense alloy which contains at least 50% Fe, 12-30% Cr, maximally 5% Mn, 0-40% Ni, preferably 6-20% Ni and 0-7% Mo and 0-1% N and 6-20% Si, all stated as weight percent, which addition of Si lowers the liquidus temperature, that is the temperature at which the binding phase is completely melted. The invention also aims at products of metal coated with the iron based material mentioned above.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: October 23, 2007
    Assignee: Alfa Laval Corpoarate AB
    Inventors: Per Erik Sjodin, Per Olof Gunnar Dahlberg
  • Publication number: 20040181941
    Abstract: The invention refers to a method of brazing together thin heat exchanging plates of an iron based base material provided with port holes and a pressing pattern of elevations and depressions over the heat exchanging area of the plates and, if present, also over the distribution area to a plate heat exchanger. The plates are coated with brazing material and are arranged such that contact between elevations and depressions in adjacent plates is obtained prior to the brazing together. The plates are then brazed together at the resultant contact points. Only 5-40%, preferably 10-30 %, of the heat exchanging area and the distribution area are coated with brazing material prior to the brazing.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 23, 2004
    Inventors: Jens Erik Johannes Rassmus, Per Erik Sjodin
  • Publication number: 20040184945
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains 0-40% Cr, preferably 9-30% Cr, 0-16% Mn, preferably 0-8% Mn, and even more preferably 0-5% Mn, 0-25% Ni, 0-1% N and maximally 7% Mo, below 6% Si and/or 0-2% B, preferably 0-1.5% B and/or 0-15% P, all stated in weight percent, which addition of B, P, Si in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as B and/or P and/or Si.
    Type: Application
    Filed: April 27, 2004
    Publication date: September 23, 2004
    Inventor: Per Erik Sjodin
  • Publication number: 20040056074
    Abstract: An iron based brazing material for joining of objects by brazing represents an alloy, which apart from iron contains maximum 40% Cr, maximum 16% Mn, maximum 40% Ni and maximum 7% Mo, all stated in weight percent and 6-40% Si, which Si-addition lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as Si, possibly also with B or P.
    Type: Application
    Filed: September 19, 2003
    Publication date: March 25, 2004
    Inventor: Per Erik Sjodin