Patents by Inventor Percy Shuo Liang
Percy Shuo Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11842724Abstract: A method for training a dialogue learning model includes presenting, via a user interface of a computing device, an utterance and a list of actions based on the utterance. A selection of an action from the list of actions is received via the user interface. A designated span of the utterance is received via the user interface. The selected action and the designated span of the utterance is provided to a computing system for training the dialogue learning model.Type: GrantFiled: December 6, 2021Date of Patent: December 12, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Patent number: 11657215Abstract: An automated natural dialogue system provides a combination of structure and flexibility to allow for ease of annotation of dialogues as well as learning and expanding the capabilities of the dialogue system based on natural language interactions.Type: GrantFiled: September 21, 2021Date of Patent: May 23, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Jesse Daniel Eskes Rusak, Daniel Klein
-
Publication number: 20220093081Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: ApplicationFiled: December 6, 2021Publication date: March 24, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Publication number: 20220004702Abstract: An automated natural dialogue system provides a combination of structure and flexibility to allow for ease of annotation of dialogues as well as learning and expanding the capabilities of the dialogue system based on natural language interactions.Type: ApplicationFiled: September 21, 2021Publication date: January 6, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Jesse Daniel Eskes Rusak, Daniel Klein
-
Patent number: 11195516Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: GrantFiled: February 26, 2020Date of Patent: December 7, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Patent number: 11145291Abstract: A method for generating training data for training a natural language processing system comprises loading, into a computer memory, a computer-readable transcript representing an ordered sequence of one or more dialogue events. The method further comprises acquiring a computer-readable command describing an exemplary ordered subsequence of one or more dialogue events from the computer-readable transcript. The method further comprises re-parametrizing the computer-readable command with an alternative semantic parameter. The method further comprises generating an alternative ordered subsequence of one or more dialogue events based on the re-parametrized computer-readable command. The method further comprises outputting, to a data store, an alternative computer-readable transcript including the alternative ordered subsequence of one or more dialogue events, the alternative computer-readable transcript having a predetermined format usable to train the computerized assistant.Type: GrantFiled: December 21, 2018Date of Patent: October 12, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Jesse Daniel Eskes Rusak, David Leo Wright Hall, Daniel Louis Klein, Percy Shuo Liang
-
Patent number: 11132499Abstract: An automated natural dialogue system provides a combination of structure and flexibility to allow for ease of annotation of dialogues as well as learning and expanding the capabilities of the dialogue system based on natural language interactions.Type: GrantFiled: August 28, 2018Date of Patent: September 28, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Jesse Daniel Eskes Rusak, Daniel Klein
-
Patent number: 11069340Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: GrantFiled: May 8, 2018Date of Patent: July 20, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Patent number: 10861440Abstract: A computing device includes a display configured to present a graphical user interface. The graphical user interface includes a transcript portion configured to display an unannotated transcript representing an ordered sequence of one or more dialogue events involving a client and a computerized assistant, at least one of the dialogue events taking the form of an example client utterance, and an annotation portion configured to display a hierarchical menu including a plurality of candidate utterance annotations. An utterance annotation machine is configured to receive one or more computer inputs selecting, for each of one or more response parameters in the example client utterance, utterance annotations from the hierarchical menu that collectively define a machine-readable interpretation of the example client utterance. An annotated utterance having a predetermined format usable to train the computerized assistant is output to a data store based on the example client utterance.Type: GrantFiled: December 21, 2018Date of Patent: December 8, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Jesse Daniel Eskes Rusak, Percy Shuo Liang
-
Patent number: 10824798Abstract: A data collection system is based on a general set of dialogue acts which are derived from a database schema. Crowd workers perform two types of tasks: (i) identification of sensical dialogue paths and (ii) performing context-dependent paraphrasing of these dialogue paths into real dialogues. The end output of the system is a set of training examples of real dialogues which have been annotated with their logical forms. This data can be used to train all three components of the dialogue system: (i) the semantic parser for understanding context-dependent utterances, (ii) the dialogue policy for generating new dialogue acts given the current state, and (iii) the generation system for both deciding what to say and how to render it in natural language.Type: GrantFiled: November 6, 2017Date of Patent: November 3, 2020Assignee: Semantic Machines, Inc.Inventors: Percy Shuo Liang, Daniel Klein, Laurence Steven Gillick, Jordan Rian Cohen, Linda Kathleen Arsenault, Joshua James Clausman, Adam David Pauls, David Leo Wright Hall
-
Publication number: 20200193970Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: ApplicationFiled: February 26, 2020Publication date: June 18, 2020Applicant: Semantic Machines, Inc.Inventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Patent number: 10586530Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: GrantFiled: February 23, 2018Date of Patent: March 10, 2020Assignee: Semantic Machines, Inc.Inventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Publication number: 20190244601Abstract: A computing device includes a display configured to present a graphical user interface. The graphical user interface includes a transcript portion configured to display an unannotated transcript representing an ordered sequence of one or more dialogue events involving a client and a computerized assistant, at least one of the dialogue events taking the form of an example client utterance, and an annotation portion configured to display a hierarchical menu including a plurality of candidate utterance annotations. An utterance annotation machine is configured to receive one or more computer inputs selecting, for each of one or more response parameters in the example client utterance, utterance annotations from the hierarchical menu that collectively define a machine-readable interpretation of the example client utterance.Type: ApplicationFiled: December 21, 2018Publication date: August 8, 2019Applicant: Semantic Machines, Inc.Inventors: Jesse Daniel Eskes RUSAK, Percy Shuo LIANG
-
Publication number: 20190237061Abstract: A method for generating training data for training a natural language processing system comprises loading, into a computer memory, a computer-readable transcript representing an ordered sequence of one or more dialogue events. The method further comprises acquiring a computer-readable command describing an exemplary ordered subsequence of one or more dialogue events from the computer-readable transcript. The method further comprises re-parametrizing the computer-readable command with an alternative semantic parameter. The method further comprises generating an alternative ordered subsequence of one or more dialogue events based on the re-parametrized computer-readable command. The method further comprises outputting, to a data store, an alternative computer-readable transcript including the alternative ordered subsequence of one or more dialogue events, the alternative computer-readable transcript having a predetermined format usable to train the computerized assistant.Type: ApplicationFiled: December 21, 2018Publication date: August 1, 2019Applicant: Semantic Machines, Inc.Inventors: Jesse Daniel Eskes RUSAK, David Leo Wright HALL, Daniel Louis KLEIN, Percy Shuo LIANG
-
Publication number: 20190066660Abstract: An automated natural dialogue system provides a combination of structure and flexibility to allow for ease of annotation of dialogues as well as learning and expanding the capabilities of the dialogue system based on natural language interactions.Type: ApplicationFiled: August 28, 2018Publication date: February 28, 2019Applicant: Semantic Machines, Inc.Inventors: Percy Shuo Liang, David Leo Wright Hall, Jesse Daniel Eskes Rusak, Daniel Klein
-
Publication number: 20180350349Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: ApplicationFiled: February 23, 2018Publication date: December 6, 2018Applicant: Semantic Machines, Inc.Inventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Publication number: 20180261205Abstract: A system that allows non-engineers administrators, without programming, machine language, or artificial intelligence system knowledge, to expand the capabilities of a dialogue system. The dialogue system may have a knowledge system, user interface, and learning model. A user interface allows non-engineers to utilize the knowledge system, defined by a small set of primitives and a simple language, to annotate a user utterance. The annotation may include selecting actions to take based on the utterance and subsequent actions and configuring associations. A dialogue state is continuously updated and provided to the user as the actions and associations take place. Rules are generated based on the actions, associations and dialogue state that allows for computing a wide range of results.Type: ApplicationFiled: May 8, 2018Publication date: September 13, 2018Applicant: Semantic Machines, Inc.Inventors: Percy Shuo Liang, David Leo Wright Hall, Joshua James Clausman
-
Publication number: 20180203833Abstract: A data collection system is based on a general set of dialogue acts which are derived from a database schema. Crowd workers perform two types of tasks: (i) identification of sensical dialogue paths and (ii) performing context-dependent paraphrasing of these dialogue paths into real dialogues. The end output of the system is a set of training examples of real dialogues which have been annotated with their logical forms. This data can be used to train all three components of the dialogue system: (i) the semantic parser for understanding context-dependent utterances, (ii) the dialogue policy for generating new dialogue acts given the current state, and (iii) the generation system for both deciding what to say and how to render it in natural language.Type: ApplicationFiled: November 6, 2017Publication date: July 19, 2018Applicant: Semantic Machines, Inc.Inventors: Percy Shuo Liang, Daniel Klein, Laurence Gillick, Jordan Cohen, Linda Kathleen Arsenault, Joshua Clausman, Adam Pauls, David Hall