Patents by Inventor Perine Jaffrennou

Perine Jaffrennou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170141255
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Perine Jaffrennou, Nada Habka, Sergej Filonovich
  • Patent number: 9620661
    Abstract: Approaches for foil-based metallization of solar cells and the resulting solar cells are described. For example, a method of fabricating a solar cell involves locating a metal foil above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate. The method also involves laser welding the metal foil to the alternating N-type and P-type semiconductor regions. The method also involves patterning the metal foil by laser ablating through at least a portion of the metal foil at regions in alignment with locations between the alternating N-type and P-type semiconductor regions. The laser welding and the patterning are performed at the same time.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 11, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taeseok Kim, Gabriel Harley, John Wade Viatella, Perine Jaffrennou
  • Patent number: 9559245
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 31, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
  • Publication number: 20160380124
    Abstract: Methods of fabricating a solar cell, and resulting solar cell are described. In an example, the method for fabricating a solar cell include forming an oxide region over a light receiving region of a silicon substrate. The method can include forming an interfacial region over the light receiving surface of the silicon substrate. The method can also include forming a first surface region comprising aluminum oxide over the interfacial region and forming a second surface region over the first surface region. In some embodiments, the first surface region can have a thickness greater than the second surface region. In one embodiment, the second surface region can have a thickness greater than the thickness of the first surface region.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Michael C. Johnson, Julien Penaud, Jara Fernandez Martin, Perine Jaffrennou
  • Publication number: 20160284922
    Abstract: Described herein are methods of fabricating solar cells. In an example, a method of fabricating a solar cell includes forming an amorphous dielectric layer on the back surface of a substrate opposite a light-receiving surface of the substrate. The method also includes forming a microcrystalline silicon layer on the amorphous dielectric layer by plasma enhanced chemical vapor deposition (PECVD). The method also includes forming an amorphous silicon layer on the microcrystalline silicon layer by PECVD. The method also includes annealing the microcrystalline silicon layer and the amorphous silicon layer to form a homogeneous polycrystalline silicon layer from the microcrystalline silicon layer and the amorphous silicon layer. The method also includes forming an emitter region from the homogeneous polycrystalline silicon layer.
    Type: Application
    Filed: June 23, 2015
    Publication date: September 29, 2016
    Inventors: Taiqing Qiu, Gilles Olav Tanguy Sylvain Poulain, Périne Jaffrennou, Nada Habka, Sergej Filonovich
  • Patent number: 9406820
    Abstract: The disclosed technology relates generally to photovoltaic cells, and more particularly to photovoltaic cells with plated metal contacts. In one aspect, a method of fabricating a photovoltaic cell with a metal contact pattern on a surface of a semiconductor substrate includes locally smoothening portions of the surface of the semiconductor substrate by using a first laser, at predetermined locations. The method additionally includes doping the surface of the semiconductor substrate to form an emitter region. The method additionally includes forming a dielectric layer on the surface of the semiconductor substrate, and subsequently forming openings through the dielectric layer by using a second laser, thereby locally exposing the underlying surface of the semiconductor substrate at the predetermined locations. The method further includes forming metal contacts at exposed regions of the surface of the semiconductor substrate by plating.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: August 2, 2016
    Assignees: IMEC vzw, Total Marketing Services, Katholieke Universiteit Leuven
    Inventors: Périne Jaffrennou, Angel Uruena De Castro
  • Publication number: 20160181447
    Abstract: Approaches for foil-based metallization of solar cells and the resulting solar cells are described. For example, a method of fabricating a solar cell involves locating a metal foil above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate. The method also involves laser welding the metal foil to the alternating N-type and P-type semiconductor regions. The method also involves patterning the metal foil by laser ablating through at least a portion of the metal foil at regions in alignment with locations between the alternating N-type and P-type semiconductor regions. The laser welding and the patterning are performed at the same time.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Taeseok Kim, Gabriel Harley, John Wade Viatella, Perine Jaffrennou
  • Publication number: 20150380581
    Abstract: Methods of passivating light-receiving surfaces of solar cells with crystalline silicon, and the resulting solar cells, are described. In an example, a solar cell includes a silicon substrate having a light-receiving surface. An intrinsic silicon layer is disposed above the light-receiving surface of the silicon substrate. An N-type silicon layer is disposed on the intrinsic silicon layer. One or both of the intrinsic silicon layer and the N-type silicon layer is a micro- or poly-crystalline silicon layer. In another example, a solar cell includes a silicon substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the silicon substrate. An N-type micro- or poly-crystalline silicon layer disposed on the passivating dielectric layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Michael C. Johnson, Kieran Mark Tracy, Princess Carmi Tomada, David D. Smith, Seung Bum Rim, Périne Jaffrennou
  • Publication number: 20150380574
    Abstract: Methods of passivating light-receiving surfaces of solar cells with high energy gap (Eg) materials, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A Group III-nitride material layer is disposed above the passivating dielectric layer. In another example, a solar cell includes a substrate having a light-receiving surface. A passivating dielectric layer is disposed on the light-receiving surface of the substrate. A large direct band gap material layer is disposed above the passivating dielectric layer, the large direct band gap material layer having an energy gap (Eg) of at least approximately 3.3. An anti-reflective coating (ARC) layer disposed on the large direct band gap material layer, the ARC layer comprising a material different from the large direct band gap material layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Michael C. Johnson, Kieran Mark Tracy, Seung Bum Rim, Jara Fernandez Martin, Périne Jaffrennou, Julien Penaud
  • Publication number: 20150122174
    Abstract: The invention relates to a die for depositing a conductive fluid onto a substrate, including a structure (11) for supporting at least one fluid (13) which is conductive and the viscosity of which sensitive to the radiation from a light source (5), in order to deposit said fluid (13) onto a substrate (3) so as to form conductive contacts or tracks on the substrate (3). The support structure (11) includes at least one tank (17) for said conductive fluid, the bottom wall (19) of which is to be arranged opposite said substrate (3) during the deposition, and said bottom wall (19) has perforations for enabling the flow (18) of said conductive fluid (13) onto the substrate (3) when said fluid (13) is subjected to the radiation (15) from said light source (5), wherein the perforations are formed according to a pattern of the fluid to be deposited onto the substrate (3).
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventors: Périne Jaffrennou, Benoit Lombardet
  • Publication number: 20150024541
    Abstract: The disclosed technology relates generally to photovoltaic cells, and more particularly to photovoltaic cells with plated metal contacts. In one aspect, a method of fabricating a photovoltaic cell with a metal contact pattern on a surface of a semiconductor substrate includes locally smoothening portions of the surface of the semiconductor substrate by using a first laser, at predetermined locations. The method additionally includes doping the surface of the semiconductor substrate to form an emitter region. The method additionally includes forming a dielectric layer on the surface of the semiconductor substrate, and subsequently forming openings through the dielectric layer by using a second laser, thereby locally exposing the underlying surface of the semiconductor substrate at the predetermined locations. The method further includes forming metal contacts at exposed regions of the surface of the semiconductor substrate by plating.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 22, 2015
    Inventors: Périne Jaffrennou, Angel Uruena De Castro
  • Publication number: 20140311563
    Abstract: The invention relates to the manufacturing process of a solar cell (1) with back contact and passivated emitter, comprising a dielectric stack (10) of at least two layers consisting of at least a first dielectric layer (11) made of AlOx in contact with a p-type silicon layer (3), and a second dielectric layer (13) deposited on the first dielectric layer (11). Besides, the method of manufacturing comprising a formation step of at least one partial opening (15) preferably by laser ablation into the dielectric stack (10), sparing at least partially the aforementioned first dielectric layer.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 23, 2014
    Applicant: Total Marketing Services
    Inventors: Perine Jaffrennou, Johan Das, Angel Uruena De Castro