Patents by Inventor Perry Li

Perry Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240297677
    Abstract: An implantable medical device, external device and method for managing a wireless communication are provided. The IMD includes a transceiver configured to communicate wirelessly, with an external device (ED), utilizing a protocol that utilizes multiple physical layers. The transceiver is configured to transmit information indicating that the transceiver is configured with first, second, and third physical layers (PHYs) for wireless communication. The IMD includes memory configured to store program instructions. The IMD includes one or more processors configured to execute instructions to obtain an instruction designating one of the first, second and third PHY to be utilized for at least one of transmission or reception, during a communication session, with the external device and manage the transceiver to utilize, during the communication session, the one of the first, second and third PHY as designated.
    Type: Application
    Filed: May 14, 2024
    Publication date: September 5, 2024
    Inventors: Perry Li, Jeffery Crook, Souvik Dubey
  • Patent number: 12021555
    Abstract: An implantable medical device, external device and method for managing a wireless communication are provided. The IMD includes a transceiver configured to communicate wirelessly, with an external device (ED), utilizing a protocol that utilizes multiple physical layers. The transceiver is configured to transmit information indicating that the transceiver is configured with first, second, and third physical layers (PHYs) for wireless communication. The IMD includes memory configured to store program instructions. The IMD includes one or more processors configured to execute instructions to obtain an instruction designating one of the first, second and third PHY to be utilized for at least one of transmission or reception, during a communication session, with the external device and manage the transceiver to utilize, during the communication session, the one of the first, second and third PHY as designated.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 25, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Perry Li, Jeffery Crook, Souvik Dubey
  • Publication number: 20240113421
    Abstract: Systems and methods for an implantable medical device which utilizes a patch antenna for communicating with an external device. The implantable medical device includes a housing, a header, and a patch antenna formed using an RF plate and a ground plate, which may be or include a metal surface of the housing. Also, a material of the header forms a dielectric of the patch antenna.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 4, 2024
    Inventors: Perry Li, Lequan Zhang
  • Patent number: 11876286
    Abstract: Systems and methods for an implantable medical device which utilizes a patch antenna for communicating with an external device. The implantable medical device includes a housing, a header, and a patch antenna formed using an RF plate and a ground plate, which may be or include a metal surface of the housing. Also, a material of the header forms a dielectric of the patch antenna.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: January 16, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Perry Li, Lequan Zhang
  • Publication number: 20230398364
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, has a header assembly that includes an antenna. A header assembly includes an antenna cap having an antenna loop embedded in a cap body. The cap body includes a dielectric material, and the antenna loop extends about a central channel of the cap body. The central channel extends along a longitudinal axis over a cap length, and the cap body has a cap width transverse to the longitudinal axis. The cap body has an aspect ratio of the cap width to the cap length greater than 1. A header assembly includes an antenna loop of the antenna encased in a header body of the header assembly. The header assembly includes a fixation element. A proximal end of the fixation element is encased in the header body. Other embodiments are also described and claimed.
    Type: Application
    Filed: June 7, 2023
    Publication date: December 14, 2023
    Inventors: Perry Li, Julianna Teixeira, Souvik Dubey, Kavous Sahabi, Davi Rodrigues, Arees Garabed
  • Patent number: 11818654
    Abstract: A method for managing power during communication with an implantable medical device, including establishing a communications link, utilizing a power corresponding to a session start power, to initiate a current session between an implantable medical device (IMD) and external device. A telemetry break condition of the communications link is monitored during the current session. The power utilized by the IMD is adjusted between low and high power levels, during the current session based on the telemetry break condition. The number of sessions is counted, including the current session and one or more prior sessions, in which the IMD utilized the higher power level, and a level for the session start power to be utilized to initiate a next session following the current session is adaptively learned based on the counting of the number of sessions.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: November 14, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Perry Li, Lequan Zhang, Xing Pei, Jeffery Crook, Yongjian Wu, Jun Yang, Chao-Wen Young
  • Publication number: 20230347156
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a header assembly that includes an antenna, is described. The antenna can be integrated into an insulator that separates an electrode of the header assembly from a flange of the header assembly. The antenna includes an antenna loop embedded in a ceramic material of the insulator. The antenna loop is located distal to the flange to reduce the likelihood of signal interference and increase communication range of the antenna. The header assembly is mounted on a housing have an electronics compartment, and an antenna lead extends from the antenna loop to electronic circuitry contained within the electronics compartment. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Inventors: Bei Ning Zhang, Brett C. Villavicencio, Perry Li, Souvik Dubey
  • Patent number: 11779772
    Abstract: An implantable medical device including a can, a feedthrough and an antenna assembly. The can includes a lead connector assembly, electronics, and a metal wall defining a hermetic sealed compartment. The electronics and lead connector assembly are located in the hermetic sealed compartment. The feedthrough extends through the metal wall between the hermetic sealed compartment and exterior the metal wall. The antenna assembly includes an antenna extending along the metal wall in a spaced-apart manner from the metal wall and encased in a dielectric material. The dielectric material occupies a space between the antenna and the metal wall. The antenna is electrically connected to the electronics via an RF conductor of the feedthrough.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: October 10, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Wisit Lim, Perry Li
  • Patent number: 11776684
    Abstract: A medical device and method are provided. The medical device includes a battery, a charge bank configured to store supplemental energy, memory to store program instructions, and device operational circuitry. The device operational circuitry identifies an energy demand (ED) action to be performed by the device operational circuitry in connection with at least one of monitoring a medical characteristic of interest (COI), treating the medical COI, or wirelessly communicating with a separate device. The device operational circuitry obtains an energy consumption estimate for an amount of energy to be consumed by the device operational circuitry in connection with performing the ED action and dispatches a charge instruction to charge the charge bank from the battery with supplemental energy. The device operational circuitry supplies the supplemental energy to the device operational circuitry for performing the ED action in connection with the at least one of monitoring, treating or communicating operations.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: October 3, 2023
    Assignee: Pacesetter, Inc
    Inventors: Jeffery Crook, Perry Li, Robert J. Williams
  • Publication number: 20230302285
    Abstract: A biostimulator, such as a leadless pacemaker, including a header assembly having an electrical feedthrough assembly incorporating a helix mount, is described. The header assembly includes a fixation element mounted on the helix mount. The helix mount is mounted on a flange of the electrical feedthrough assembly, and thus, the fixation element can attach the leadless biostimulator to a target tissue. An electrode of the electrical feedthrough assembly is mounted within the flange to deliver a pacing impulse to the target tissue. A ceramic portion of the helix mount is disposed between the flange and the electrode to block an electrical path between the electrode and the flange. Accordingly, the helix mount both retains the fixation element on the leadless biostimulator and electrically isolates the flange and electrode components of the electrical feedthrough. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 28, 2023
    Inventors: Bei Ning Zhang, Brett C. Villavicencio, Perry Li
  • Publication number: 20230261368
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11724112
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a header assembly that includes an antenna, is described. The antenna can be integrated into an insulator that separates an electrode of the header assembly from a flange of the header assembly. The antenna includes an antenna loop embedded in a ceramic material of the insulator. The antenna loop is located distal to the flange to reduce the likelihood of signal interference and increase communication range of the antenna. The header assembly is mounted on a housing have an electronics compartment, and an antenna lead extends from the antenna loop to electronic circuitry contained within the electronics compartment. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: August 15, 2023
    Assignee: PACESETTER, INC.
    Inventors: Bei Ning Zhang, Brett C. Villavicencio, Perry Li, Souvik Dubey
  • Publication number: 20230226362
    Abstract: A method for producing an implantable medical device (IMD) includes forming a channel along a surface of a housing of the IMD, and depositing a conductive material into the channel to at least partially fill the channel and form an antenna of the IMD on the housing. The method also includes electrically connecting the antenna to communication circuitry contained within the housing to facilitate wireless communication with at least one of a second IMD or an external device.
    Type: Application
    Filed: January 19, 2022
    Publication date: July 20, 2023
    Inventors: Jeffery Crook, Perry Li
  • Publication number: 20230209460
    Abstract: A method for managing power during communication with an implantable medical device, including establishing a communications link, utilizing a power corresponding to a session start power, to initiate a current session between an implantable medical device (IMD) and external device. A telemetry break condition of the communications link is monitored during the current session. The power utilized by the IMD is adjusted between low and high power levels, during the current session based on the telemetry break condition. The number of sessions is counted, including the current session and one or more prior sessions, in which the IMD utilized the higher power level, and a level for the session start power to be utilized to initiate a next session following the current session is adaptively learned based on the counting of the number of sessions.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Inventors: Perry Li, Lequan Zhang, Xing Pei, Jeffery Crook, Yongjian Wu, Jun Yang, Chao-Wen Young
  • Patent number: 11684789
    Abstract: A biostimulator, such as a leadless pacemaker, including a header assembly having an electrical feedthrough assembly incorporating a helix mount, is described. The header assembly includes a fixation element mounted on the helix mount. The helix mount is mounted on a flange of the electrical feedthrough assembly, and thus, the fixation element can attach the leadless biostimulator to a target tissue. An electrode of the electrical feedthrough assembly is mounted within the flange to deliver a pacing impulse to the target tissue. A ceramic portion of the helix mount is disposed between the flange and the electrode to block an electrical path between the electrode and the flange. Accordingly, the helix mount both retains the fixation element on the leadless biostimulator and electrically isolates the flange and electrode components of the electrical feedthrough. Other embodiments are also described and claimed.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: June 27, 2023
    Assignee: PACESETTER, INC.
    Inventors: Bei Ning Zhang, Brett C. Villavicencio, Perry Li
  • Patent number: 11670843
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11622325
    Abstract: A method for managing power during communication with an implantable medical device, including establishing a communications link, utilizing a power corresponding to a session start power, to initiate a current session between an implantable medical device (IMD) and external device. A telemetry break condition of the communications link is monitored during the current session. The power utilized by the IMD is adjusted between low and high power levels, during the current session based on the telemetry break condition. The number of sessions is counted, including the current session and one or more prior sessions, in which the IMD utilized the higher power level, and a level for the session start power to be utilized to initiate a next session following the current session is adaptively learned based on the counting of the number of sessions.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: April 4, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Perry Li, Lequan Zhang, Xing Pei, Jeffery Crook, Yongjian Wu, Jun Yang, Chao-Wen Young
  • Publication number: 20220263904
    Abstract: Techniques include a medical device including processors, one or more sensors configured to generate signals corresponding to one or more physiological signals detected in a body of a user, a communication module configured to communicate wirelessly with a receiving device using a communication protocol capable of data transmission or reception at multiple data rates, and memories including instructions to cause the one or more processors to transmit information to the receiving device indicating that the communication module is configured to communicate using the multiple data rates; determine one of the data rates to be utilized for at least one of data transmission or reception during a communication session with the receiving device; initialize the communication session with the receiving device using the determined data rate; and transmit, via to the receiving device and using the determined data rate, communications based on the signals corresponding to the physiological signals.
    Type: Application
    Filed: May 4, 2022
    Publication date: August 18, 2022
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Xuandong Hua, Jean-Pierre Cole, Perry Li, Souvik Dubey
  • Publication number: 20220182930
    Abstract: A method for managing power during communication with an implantable medical device, including establishing a communications link, utilizing a power corresponding to a session start power, to initiate a current session between an implantable medical device (IMD) and external device. A telemetry break condition of the communications link is monitored during the current session. The power utilized by the IMD is adjusted between low and high power levels, during the current session based on the telemetry break condition. The number of sessions is counted, including the current session and one or more prior sessions, in which the IMD utilized the higher power level, and a level for the session start power to be utilized to initiate a next session following the current session is adaptively learned based on the counting of the number of sessions.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventors: Perry Li, Lequan Zhang, Xing Pei, Jeffery Crook, Yongjian Wu, Jun Yang, Chao-Wen Young
  • Publication number: 20220140854
    Abstract: An implantable medical device, external device and method for managing a wireless communication are provided. The IMD includes a transceiver configured to communicate wirelessly, with an external device (ED), utilizing a protocol that utilizes multiple physical layers. The transceiver is configured to transmit information indicating that the transceiver is configured with first, second, and third physical layers (PHYs) for wireless communication. The IMD includes memory configured to store program instructions. The IMD includes one or more processors configured to execute instructions to obtain an instruction designating one of the first, second and third PHY to be utilized for at least one of transmission or reception, during a communication session, with the external device and manage the transceiver to utilize, during the communication session, the one of the first, second and third PHY as designated.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Perry Li, Jeffery Crook, Souvik Dubey