Patents by Inventor Perry Lou

Perry Lou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9397654
    Abstract: Various methods and devices that involve power-on-reset (POR) circuits are disclosed herein. An exemplary POR circuit for generating a POR signal upon detecting that a supply voltage has reached a desired level comprises a sense circuit and a delayed buffer. The sense circuit comprises: (i) an inverter powered by a known bias voltage; (ii) a feedback circuit powered by the supply voltage; and (iii) an output node of the sense circuit that experiences a voltage transition when the supply voltage has reached the desired level. The delayed buffer is coupled to the output node of the sense circuit that generates the POR signal in response to the voltage transition. The feedback circuit shuts off the sense circuit in response to the voltage transition. The POR circuit generates the POR signal for a local system. The known bias voltage is provided by an external system.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: July 19, 2016
    Assignee: Qualcomm Incorporated
    Inventor: Perry Lou
  • Patent number: 9385595
    Abstract: A charge pump regulator circuit includes an oscillator and one or more charge pumps. One or more oscillating signals are generated by the oscillator. Each oscillating signal has a peak-to-peak amplitude that is variable dependent on a variable drive signal. For some embodiments having multiple oscillating signals, each oscillating signal is phase shifted from a preceding oscillating signal. For some embodiments having multiple charge pumps, each charge pump is connected to receive a corresponding one of the oscillating signals. Each charge pump outputs a voltage and current. For some embodiments having multiple charge pumps, the output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to a load.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: July 5, 2016
    Assignee: QUALCOMM SWITCH CORP.
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Publication number: 20160105169
    Abstract: Various methods and devices that involve power-on-reset (POR) circuits are disclosed herein. An exemplary POR circuit for generating a POR signal upon detecting that a supply voltage has reached a desired level comprises a sense circuit and a delayed buffer. The sense circuit comprises: (i) an inverter powered by a known bias voltage; (ii) a feedback circuit powered by the supply voltage; and (iii) an output node of the sense circuit that experiences a voltage transition when the supply voltage has reached the desired level. The delayed buffer is coupled to the output node of the sense circuit that generates the POR signal in response to the voltage transition. The feedback circuit shuts off the sense circuit in response to the voltage transition. The POR circuit generates the POR signal for a local system. The known bias voltage is provided by an external system.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 14, 2016
    Inventor: Perry Lou
  • Publication number: 20150303794
    Abstract: A charge pump regulator circuit includes an oscillator and one or more charge pumps. One or more oscillating signals are generated by the oscillator. Each oscillating signal has a peak-to-peak amplitude that is variable dependent on a variable drive signal. For some embodiments having multiple oscillating signals, each oscillating signal is phase shifted from a preceding oscillating signal. For some embodiments having multiple charge pumps, each charge pump is connected to receive a corresponding one of the oscillating signals. Each charge pump outputs a voltage and current. For some embodiments having multiple charge pumps, the output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to a load.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Patent number: 9081399
    Abstract: A charge pump regulator circuit includes an oscillator and one or more charge pumps. One or more oscillating signals are generated by the oscillator. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive signal. For some embodiments having multiple oscillating signals, each oscillating signal is phase shifted from a preceding oscillating signal. For some embodiments having multiple charge pumps, each charge pump is connected to receive a corresponding one of the oscillating signals. Each charge pump outputs a voltage and current. For some embodiments having multiple charge pumps, the output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to a load.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: July 14, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Patent number: 9041370
    Abstract: A charge pump regulator circuit includes a voltage controlled oscillator and a plurality of charge pumps. The voltage controlled oscillator has a plurality of inverter stages connected in series in a ring. A plurality of oscillating signals is generated from outputs of the inverter stages. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive voltage. Each oscillating signal is phase shifted from a preceding oscillating signal. Each charge pump is connected to a corresponding one of the inverter stages to receive the oscillating signal produced by that inverter stage. Each charge pump outputs a voltage and current. The output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to the load.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: May 26, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Patent number: 8975943
    Abstract: Embodiments of the present invention provide a device for level shifting an input signal. The device includes an output buffer that has: an output node, a p-FET coupled to a high reference voltage, and an n-FET coupled to a low reference voltage. The device also includes two latches. The first latch has a first latch output that drives a gate of the p-FET via an inverting circuit element. The second latch has a second latch output that drives a gate of the n-FET via a non-inverting circuit element. The device also includes a reset signal pulse generator that receives the input signal and generates a reset signal pulse in response to a transition in the input signal. Both of the latches are placed in a reset state by the reset signal pulse.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 10, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventor: Perry Lou
  • Publication number: 20140354342
    Abstract: Embodiments of the present invention provide a device for level shifting an input signal. The device includes an output buffer that has: an output node, a p-FET coupled to a high reference voltage, and an n-FET coupled to a low reference voltage. The device also includes two latches. The first latch has a first latch output that drives a gate of the p-FET via an inverting circuit element. The second latch has a second latch output that drives a gate of the n-FET via a non-inverting circuit element. The device also includes a reset signal pulse generator that receives the input signal and generates a reset signal pulse in response to a transition in the input signal. Both of the latches are placed in a reset state by the reset signal pulse.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventor: Perry Lou
  • Publication number: 20140009136
    Abstract: A charge pump regulator circuit includes an oscillator and one or more charge pumps. One or more oscillating signals are generated by the oscillator. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive signal. For some embodiments having multiple oscillating signals, each oscillating signal is phase shifted from a preceding oscillating signal. For some embodiments having multiple charge pumps, each charge pump is connected to receive a corresponding one of the oscillating signals. Each charge pump outputs a voltage and current. For some embodiments having multiple charge pumps, the output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to a load.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 9, 2014
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Publication number: 20140009135
    Abstract: A charge pump regulator circuit includes a voltage controlled oscillator and a plurality of charge pumps. The voltage controlled oscillator has a plurality of inverter stages connected in series in a ring. A plurality of oscillating signals is generated from outputs of the inverter stages. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive voltage. Each oscillating signal is phase shifted from a preceding oscillating signal. Each charge pump is connected to a corresponding one of the inverter stages to receive the oscillating signal produced by that inverter stage. Each charge pump outputs a voltage and current. The output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to the load.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Patent number: 8497670
    Abstract: A charge pump regulator circuit includes a voltage controlled oscillator and a plurality of charge pumps. The voltage controlled oscillator has a plurality of inverter stages connected in series in a ring. A plurality of oscillating signals is generated from outputs of the inverter stages. Each oscillating signal has a frequency or amplitude or both that are variable dependent on a variable drive voltage. Each oscillating signal is phase shifted from a preceding oscillating signal. Each charge pump is connected to a corresponding one of the inverter stages to receive the oscillating signal produced by that inverter stage. Each charge pump outputs a voltage and current. The output of each charge pump is phase shifted from the outputs of other charge pumps. A combination of the currents thus produced is provided at about a voltage level to the load.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 30, 2013
    Assignee: IO Semiconductor, Inc.
    Inventors: Stuart B. Molin, Perry Lou, Clint Kemerling
  • Publication number: 20060044007
    Abstract: An adaptive output driver circuit utilizes an initial point matched impedance model to match the impedance of an output driver to the transmission line and produce an initial step voltage into the transmission line that is half of the desired final voltage. The driver output impedance is controlled by comparing a model of the actual working output stage to a target resistance given by the user. Control signals used to calibrate the impedance of the model to match the target are also used to adjust the working output buffer, so that when the impedance of the model matches the target, the impedance of the working buffer also matches the target impedance.
    Type: Application
    Filed: August 31, 2004
    Publication date: March 2, 2006
    Inventor: Perry Lou